The article presents the results of autolytic processes impact on the protein-peptide profile of Bos taurus and Sus scrofa cardiac muscle and aorta. The results of tissue-specific protein identification are also presented as well as the effect of autolysis. Apolipoprotein A-1 involved in the formation of high-density lipoproteins, peroxiredoxin-1 involved in the suppression of oxidative stress, galectin-1 induced apoptosis of T-lymphocytes, as well as number of heat shock proteins with molecular weight less than 30 kDa were identified in Sus scrofa aorta tissue. It was discovered that functional proteins with molecular weight less than 30 kDa are retained during the freezing process, but destroyed under the action of autolytic enzymes. This work was supported by the Russian Science Foundation (project No. 16–16–10073).
This paper studies the features of formation of sausage product structure in the process of cooking. It is shown that the viscosity of sausage meat varies in a complex manner and has three characteristic areas. The characteristic parameters that determine the formation of the structure of sausages for each area were found. It is established that the use of the cavitation brine gives the finished product a gentle consistence, elasticity and distinct taste that makes it more preferable for the consumer.
The comparative assessment of the experimental and computational methods for detecting the quantity of frozen-out water proposed by V. Zhadan, V. Latyshev, J. Nagаоka, L. Riedel, D. Ryutov and G. Chizhov as applied to beef in the temperature range of –1°С to –30 °С was carried out.
It was shown that the values of frozen-out water proportion detected by the formula of J. Nagаоka were 6–7% higher than the experimental data of L.Riedel in a temperature range of –7 °С to –30 °С. With decrease of the meat temperature from –7 °С to –30 °С, the difference in the experimental data obtained by L.Riedel and V. Latyshev reaches 5%.
The values corresponding to the most reliable experimental data of L. Riedel for beef (tcr = –0,95 °С), which were adopted in the recommendations of the International Institute of Refrigeration (IIR), are most accurately described by the theoretical dependence proposed by D. Rutov. Using this dependence, the quantity of frozenout water in a temperature range of –1°С to –4 °С was detected as applied to NOR and DFD meat.
It was established that at a difference of the cryoscopic temperature of 0,3 °С between two groups of meat, the ice content at a temperature of –2 °С is 13,0% higher in DFD meat compared to NOR meat, and in order to ensure the same content of frozen-out water (30%), the storage temperature for NOR meat should be 0,5 °С lower than that for DFD meat.
The studies on the dynamics of the redox potential of systems and its relationship with the processes of protein and fat destruction in canned foods during their storage are fragmented and not systemized, which highlight their topicality. The aim of the research was to obtain the experimental data on the Eh values and physico-chemical indicators of canned food quality during storage in order to establish their possible correlation. It was shown that the dynamics of Eh, the content of free amino acids and fatty acid fractions in the canned products from beef and pork was different during storage. For example, a decrease in the Eh value and free amino acid content in the canned products from beef had a smooth character, while in the canned products from pork several periods were observed, which differed in the character of the change in the quality indicators.
A linear character of the changes in the proportion of fatty acid fractions during storage of the canned products from beef and pork was noticed. With that, both canned food items had an increase in the saturated fatty acid content at the concomitant decrease in the sum of mono- and polyunsaturated fatty acids. The value of an increase in the proportion of saturated fatty acids associated with the process of reduction of mono- and polyunsaturated fatty acids did not depend on the kind of meat in the canned foods and was on average 6%. A decrease in the proportion of mono- and polyunsaturated fatty acids in the canned products from pork was about 4 times more intensive compared to the canned products from beef.
In this work, the risk of contamination of cattle and pig carcasses with pathogens at different stages of their slaughter and processing was assessed. The analysis of meat (carcasses, half carcasses and cuts) and meat semi-prepared products from beef and pork for the presence of the microorganisms of the genera Salmonella and Listeria, and Listeria monocytogenes in the samples taken by the destructive (from the depth) and nondestructive (from the surface) methods was carried out to determine the critical points. It was found that the deep layers of beef and pork cuts were not contaminated with the microorganisms of the genus Salmonella and L.monocytogenes. However, surface contamination of cattle and pig carcasses and half-carcasses with Salmonella and L.monocytogenes was revealed at the stages of hide removal and evisceration of the carcasses. Dry and wet cleaning of carcasses and half-carcasses did not facilitate the reduction of contamination. This fact is the cause of contamination of meat semi-prepared products (small-sized and minced), which was established during the study.
In this paper, the results of the experimental research on developing the technology of a protein complex based on the meat-bone paste and protein-fat-blood emulsion are shown. The technological scheme of meat-bone paste production on the basis of complex grinding meat-bone raw material to bone particle size of 100 ∙10–6 m and further processing of bone particles using reagent, cheese whey, with pH 4,3 is presented. When studying the nutritive and biological value of the protein complex, it was established that the protein complex consisting of the food component from bone and protein-fat-blood emulsion could be used instead of the basic raw material in meat product production. The comparative analysis of the nutritive value of the protein complex and horse meat demonstrated the following results: the amino acid composition of the protein complex showed a balance of the essential amino acids and the high content of the essential amino acids which limit the biological value: lysine, leucine and threonine. The high content of polyunsaturated fatty acids was observed, which justified the biological value of the protein complex.
The results of the research works related to investigation of sanitary-hygienic characteristics of multilayer polymer film materials where the inner layer contacting directly with food product is modified by native antimicrobial components.
ISSN 2414-441X (Online)