Theory and practice of meat processing

Advanced search


Full Text:



The aim of proteomics is to identify all proteins, their biological activity, post-translational modifications and interactions in a cell, and to identify (quantify?) changes in «proteome» in response to altered biological conditions. A typical proteomics work flow consists of protein extraction, separation, protein or peptide identification and data analysis. Mass spectrometry is the most common method used to detect proteins or peptides in proteomics. This strategy has many applications, including research in meat science, but it is limited by huge biochemical heterogeneity of the proteins and an inability to detect accurately low-abundance proteins. The aim of the present review is to summarize the current knowledge and identify future potential application of proteomics in meat science and technology.

About the Authors

Galia Zamaratskaia
Swedish University of Agricultural Sciences, researcher, Uppsala BioCenter, Department of Food Science, Uppsala, Sweden

PhD, Associate Professor 


Shengjie  Li
School of Food Science and Technology, Dalian Polytechnic University; National Engineering Research Center of Seafood, Dalian, P. R. China.
PhD, Lecturer


1. Anderson N.G., Anderson N.L., 1996. Twenty years of two- dimensional electrophoresis: past, present and future. Electrophoresis 17:443-453.

2. Lametsch R., Bendixen E., 2001. Proteome analysis applied to meat science: Characterizing postmortem changes in porcine muscle. J. Agric. Food Chem. 49:4531–4537.

3. Paredi G., Raboni S., Bendixen E., de Almeida A.M., Mozzarelli A., 2012. «Muscle to meat» molecular events and technological transformations: the proteomics insight. J Proteomics 75(14):4275-4289. DOI: 10.1016/j.jprot.2012.04.011.

4. Soares R., Franco C., Pires E., Ventosa M., Palhinhas R., Koci K., Martinho de Almeida A., Varela Coelho A., 2012. Mass spectrometry and animal science: protein identification strategies and particularities of farm animal species. J Proteomics 75(14):4190-206. DOI: 10.1016/j.jprot.2012.04.009.

5. Longo V., Lana A., Bottero M.T., Zolla L., 2015. Apoptosis in muscle-to-meat aging process: The omic witness. J Proteomics 125:29-40.

6. Yang H., Xu X.L., Ma H.M., Jiang J., 2016. Integrative analysis of transcriptomics and proteomics of skeletal muscles of the Chinese indigenous Shaziling pig compared with the Yorkshire breed. BMC Genet. 17(1):80.

7. Bouley J., Chambon C., Picard B., 2004. Mapping of bovine skeletal muscle proteins using two-dimensional gel electrophoresis and mass spectrometry. Proteomics 24:1811–24.

8. Brulé C., Dargelos E., Diallo R., Listrat A., Béchet D., Cot-tin P., Poussard S., 2010. Proteomic study of calpain interacting proteins during skeletal muscle aging. Biochimie 92:1923–1933.

9. Morzel M., Chambon C., Hamelin M., Santé-Lhoutellier V., Sayd T., Monin G., 2004. Proteome changes during pork meat ageing following use of two different pre-slaughter handling procedures. Meat Sci. 67(4):689-96. DOI: 10.1016/j.meat-sci.2004.01.008.

10. Di Luca A., Elia G., Mullen A.M., Hamill R.M., 2013. Monitoring post mortem changes in porcine muscle through 2-D DIGE proteome analysis of Longissimus muscle exudate. Proteome Science 11: 14.

11. Ouali A., Gagaoua M., Boudida Y., Becila S., Boudjellal A., Herrera-Mendez C.H., Sentandreu M.A., 2013. Biomarkers of meat tenderness: Present knowledge and perspectives in regards to our current understanding of the mechanisms involved. Meat Sci 95: 854-870.

12. Picard B., Gagaoua M., Micol D., Cassar-Malek I., Hoc-quette J.F., Terlouw C.E., 2014. Inverse relationships between biomarkers and beef tenderness according to contractile and metabolic properties of the muscle. J Agric Food Chem. 62(40):9808-9818.

13. Zuo H., Han L., Yu Q., Niu K., Zhao S., Shi H., 2016. Proteome changes on water-holding capacity of yak longissimus lumborum during postmortem aging. Meat Sci. 121:409-19. DOI: 10.1016/j. meatsci.2016.07.010.

14. Yu T.Y., Morton J.D., Clerens S., Dyer J.M., 2016. Proteomic investigation of protein profile changes and amino acid residue-level modification in cooked lamb longissimus thoracis et lumbo-rum: The effect of roasting. Meat Sci. 119:80-8. DOI: 10.1016/j. meatsci.2016.04.024.

15. Amid A., Samah N.A., Yusof F., 2012. Identification of troponin I and actin, alpha cardiac muscle 1 as potential biomarkers for hearts of electrically stimulated chickens. Proteome Sci. 10(1):1. DOI: 10.1186/1477-5956-10-1.

16. Salwani M.S., Adeyemi K.D., Sarah S.A., Vejayan J., Zulkifli I., Sazili A.Q., 2015. Skeletal muscle proteome and meat quality of broiler chickens subjected to gas stunning prior slaughter or slaughtered without stunning. CyTA. J. Food 14:1-7 DOI: 10.1080/19476337.2015.1112838.

17. Shi X., Li C., Cao M., Xu X., Zhou G., Xiong Y.L., 2016. Comparative proteomic analysis of longissimus dorsi muscle in immuno- and surgically castrated male pigs.Food Chem. 199:885-92.

18. Skrlep M., Candek-Potokar M., Mandelc S., Javornik B., Gou P., Chambon C., Sante-Lhoutellier V, 2011. Proteomic profile of dry-cured ham relative to PRKAG3 or CAST genotype, level of salt and pastiness. Meat Sci 88:657-667.

19. Pioselli B., Paredi G., Mozzarelli A., 2011. Proteomic analysis of pork meat in the production of cooked ham. Molecular Biosystems 7:2252–2260.

20. Von Bargen C., Dojahn J., Waidelich D., Humpf H.U., Brockmeyer J. 2013. New sensitive high-performance liquid chroma tography tandem mass spectrometry method for the detection of horse and pork in halal beef. Journal of Agricultural and Food Chemistry, 61, 11986–11994.

21. Montowska M., Pospiech E., 2012. Myosin light chain iso-forms retain their species-specific electrophoretic mobility after processing, which enables differentiation between six species: 2DE analysis of minced meat and meat products made from beef, pork and poultry. Proteomics 12: 2879–2889.

22. Montowska M., Pospiech E., 2013. Species-specific expression of various proteins in meat tissue: proteomic analysis of raw and cooked meat and meat products made from beef, pork and selected poultry species, Food Chem 136: 1461–1469.

23. Leitner A., Castro-Rubio F., Marina M.L., Lindner W., 2006. Identification of marker proteins for the adulteration of meat products with soybean proteins by multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res. 5(9):2424-2430.

24. Marco-Ramell A., Pato R., Peña R., Saco Y., Manteca X., Ruiz de la Torre J.L., Bassols A., 2011. Identification of serum stress biomarkers in pigs housed at different stocking densities. Vet J 190:e66–e71. DOI: 10.1016/j.tvjl.2011.01.003.

25. Wang P., Bouwman F.G., Mariman E.C., 2009. Generally detected proteins in comparative proteomics — a matter of cellular stress response? Proteomics 9: 2955–2966

26. Marco-Ramell A., Arroyo L., Saco Y., García-Heredia A., Camps J., Fina M., Piedrafita J., Bassols A., 2012. Proteomic analysis reveals oxidative stress response as the main adaptative physiological mechanism in cows under different production systems. J Proteomics. 2012 75(14):4399-4411. DOI: 10.1016/j. jprot.2012.04.002.

27. Jensen O.N., 2004. Modification-specific proteomics: Characterization of post-translational modifications by mass spectrometry. Curr. Opin. Chem. Biol. 8:33–41.

For citation:

Zamaratskaia G., Li S. PROTEOMICS IN MEAT SCIENCE — CURRENT STATUS AND FUTURE PERSPECTIVE. Theory and practice of meat processing. 2017;2(1):18-26.

Views: 4235

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.

ISSN 2414-438X (Print)
ISSN 2414-441X (Online)