Preview

Theory and practice of meat processing

Advanced search

ANTIMICROBIAL SUBSTANCES: AN ALTERNATIVE APPROACH TO THE EXTENSION OF SHELF LIFE

https://doi.org/10.21323/2414-438X-2017-2-3-4-20

Abstract

The problem of high losses of raw materials and products in the food industry is reviewed in the article. Brief lists of spoilage types as well as the available approaches to meat preservation are discussed including technological, physical and chemical. Natural antimicrobial substances are considered as alternative approaches, the existence of which has been known for more than 60 years. Antimicrobial peptides are the evolutionary ancient factor of innate immunity and are found in the cells and tissues of vertebrate and invertebrate animals, plants, fungi and bacteria. Present approaches to their classification, structure and mechanisms of action are discussed. The information from the Antimicrobial Peptide Database and the UniProt Protein Database is systematized in relation to the presence of antimicrobial substances in the tissues of pigs and cattle. Such parameters as the molecular weight, isoelectric point, charge, amino acid sequence and share a hydrophobic part, as well as a range of activities: antibacterial, antifungal, antiviral, antiparasitic, etc. are presented in the article. On the basis of the review, alternative sources of antimicrobial proteins and peptides are proposed as well as technology for shelf life prolonging.

About the Authors

Ekaterina A. Lukinova
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation
senior laboratory assistant of Experimental clinic — research laboratory of biologically active substances of an animal origin, V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences 109316, Moscow, Talalikhina str., 26 Tel.: +7–495–676–92–11


Elena A. Kotenkova
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation
candidate of technical sciences, research scientist of Experimental clinic –research laboratory of biologically active substances of an animal origin, V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences 109316, Moscow, Talalikhina str., 26 Tel.: +7–495–676–92–11


Alexander N. Makarenko
Bogomolets National Medical University
Ukraine
doctor of medical sciences, professor of Department of histology and embryology, Bogomolets national medical university 02000, Kiev, 34 Peremohy Avenue, Morphology Building. Теl.: +380–454–49–89


References

1. Food losses and waste in the context of sustainable food systems. The report of Group of high-level experts on food se- curity and nutrition, 2014. — Р. 1–142. [Электронный ресурс: http://www.fao.org/3/a-i3901r.pdf. Дата обращения: 17.09.2017]

2. Kostenko, Yu.G. Guideline on sanitary microbiological princi- pals and prevention of risks upon meat product production and storage / Yu.G. Kostenko // Meat industry.— 2015.— № 6. — P. 44–47.

3. Kameník, J. The microbiology of meat spoilage: a review / J. Kameník // Maso International — Journal of Food Science and Technology.— 2013. — Р.1–9. [Электронный ресурс: http://www.maso-international.cz/wp-content/uploads/2013/08/maso-international‑2013–1-page‑003–010.pdf.Дата обращения: 17.09.2017]

4. Encyclopedia of Meat Sciences, Second Edition/edited M. Dikeman and C. Devine // London: Academic Press, 2014. — 1712 p.

5. Kostenko, Yu.G. Microbiological aspects of chilled pork production with a long shelf life / Yu.G. Kostenko, D.S. Batayeva, М.А. Krasnova // Meat industry.— 2014.— № 4. — P. 66.

6. Chernukha, I.M. About prolonging of raw meat storage. / I.M. Chernukha, A.N. Makarenko, L.V. Fedulova, G.S. Tolmacheva // Meat industry.— 2012.—№ 10. — С. 12–14.

7. Preserved Meat Guide [Электронныйресурс: http://www.dartagnan.com/preserved-meat-methods.html. Дата обращения: 15.08.2017].

8. Syasin, I.E. Features of cryopreservation and cryoseparation of food raw materials. / I.E. Syasin // Polythematic online scientific journal of Kuban State Agrarian University.— 2011.— № 66(02). — С. 1–12.

9. Zolotokopova, S.V. Theoretical study of preservative action mechanism of smoke components in the extracts. / S.V. Zolotokopova, I.A. Palagina // Izvestia vuzov. Pishevaya tekhnologia.— 2007.— № 3. — С. 36–42.

10. Nesterenko, A.A. Pickles of meat and meat products. / A.A. Nesterenko, A.S. Kayatskaya // Vestnik NGIEI.— 2012.— № 8. — С. 46–54.

11. Zaitseva, U.A. Types of pickles and its application in the meat industry. / U.A. Zaitseva, E.G. Girina, A.V. Ponomarenko // Molodoi ychenyi.— 2014.— № 4. — С. 164–167.

12. Tuniyeva, E.K. Ingredients and packaging at IFFA 2013: the easy consumption of natural products. / E.K. Tuniyeva // Vse o myase.— 2013.— № 3. — С. 5–7.

13. Tuniyeva, E.K. To a safety issue of food additives. / E.K. Tuniyeva // Vse o myase.— 2015.— № 4. — С. 10–13.

14. Azimova, V.T. Endogenous antimicrobial peptides of animal origin. / V.T. Azimova, N.I. Potaturkina-Nesterova, A.S. Nesterov //Modern problems of science and education.— 2015.— № 6. [Электронный ресурс: https://www.science-education.ru/ru/ article/view?id=23025.Дата обращения: 15.08.2017].

15. Panteleev, EV. Structural and functional studies of animal antimicrobial peptides: Dis. cand. chem. sciences. — Moscow, 2015.— 130 p.

16. Ovchinnikova TV. Structural and functional studies of natu- ral peptide antibiotics: Dis. doc. chem. sciences (a scientific pa- per). — Moscow, 2011.— 68 p.

17. Bea Rde, L. Synthesis, antimicrobial activity and toxicity of analogs of the scorpion venom BmKn peptides. / L. Bea Rde, A.F. Petraglia, L.E. Johnson // Toxicon. — 2015. — V. 101.— P. 79–84.

18. Zhong, J. Transcriptomic analysis of the venom glands from the scorpion Hadogenes troglodytes revealed unique and extremely high diversity of the venom peptides. / J. Zhong, X.C. Zeng, X. Zeng, Y. Nie, L. Zhang, S. Wu, A. Bao // Journal of proteomics.—2017. — V. 150. — P. 40–62.

19. Bamdad, F. Preparation and characterization of antimicrobial cationized peptides from barley (Hordeumvulgare L.) proteins./ F. Bamdad, X. Sun, L.L. Guan, L. Chen // LWT — Food Science and Technology.—2015. — V.63.— № 1. — P. 29–36.

20. McDonald, M. Structure–function relationships in histidinerich antimicrobial peptides from Atlantic cod / M. McDonald, M. Mannion, D. Pike, K. Lewis, A. Flynn, A.M. Brannan, M.J. Browne, D. Jackman, L. Madera, M.R. Power Coombs, D.W. Hoskin, M.L. Rise, V. Booth // Biochimica et biophysicaacta. — 2015. — V. 1848.— № 7. — P. 1451–1461.

21. Shamova, O.V. Acipensins — novel antimicrobial peptides from leukocytes of the Russian sturgeon Acipenser gueldenstaedtii / O.V. Shamova, D.S. Orlov, S.V. Balandin, E.I. Shramova, E.V. Tsvetkova, P.V. Panteleev, Yu.F. Leonova, A.A. Tagaev, V.N. Kokryakov, T.V. Ovchinnikova // Acta Naturae. — 2014. — V. 6.— № 4. — P. 99–109.

22. Espinosa, E.P. Proteomic characterization of mucosal secretions in the eastern oyster, Crassostrea virginica. / E.P. Espinosa, A. Koller, B. Allam // Journal of Proteomics.— 2016. — V. 132. — P. 63–76.

23. Geng, X. Proteomic analysis of the skin of Chinese giant salamander (Andrias davidianus). / X. Geng, H. Wei, H. Shang, M. Zhou, B. Chen, F. Zhang, X. Zang, P. Li, J. Sun, J. Che, Y. Zhang, C. Xu // Journal of Proteomics.— 2015. — V.119. — P. 196–208.

24. Holden, W.M. Development of antimicrobial peptide defenses of southern leopard frogs, Ranas phenocephala, against the pathogenic chytrid fungus, Batrachochytrium dendrobatidis./ W.M. Holden, L.K. Reinert, S.M. Hanlon, M.J. Parris, L.A. RollinsSmith // Developmental & Comparative Immunology.— 2015. — V. 48.— № 1. — P. 65–75.

25. Conlon, J.M. Potential therapeutic applications of multifunctional host-defense peptides from frog skin as anticancer, anti-viral, immunomodulatory, and anti-diabetic agents. /J.M. Conlon, M. Mechkarskа, M.L. Lukiс, P.R. Flatt // Peptides.— 2014. — V. 57. — P. 67–77.

26. Conlon, J.M. A family of antimicrobial and immunomodulatory peptides related to the frenatins from skin secretions of the Orinoco lime frog Sphaenorhynchuslacteus (Hylidae). / J.M. Conlon, M. Mechkarska, G. Radosavljevic, S. Attoub, J.D. King, M.L. Lukic, S. McClean // Peptides. — 2014. — V. 56. — P. 132–140.

27. Sycheva, M.V. The use of electroanalytical and separation methods for assessment of action mechanism of antimicrobial peptides from chicken platelets. / M.V. Sycheva, A.S. Vasil’chenko, A.A. Kul’sarin, E.A. Rogozhin, U.I. Peshkova, OL. Kartashova // Bulleten Orenburgskogo nauchnogo centra UroRAN.— 2016.— № 1. — С. 1–8.

28. Shamova, O.V. Minibactenecins ChBac7.Nα and ChBac7. Nβ — antimicrobial peptides from leukocytes of the goat Capra hircus. / O.V. Shamova, D.S. Orlov, M.S. Zharkova, S.V. Balandin, E.V. Yamschikova, D. Knappe, R. Hoffmann, V.N. Kokryakov, T.V. Ovchinnikova // ActaNaturae.— 2016. — V. 8. — № 3. — P. 136–146.

29. Ilina, E.I. Antimicrobial peptide from leukocytes of Vulpesvulpes red fox. / E.I. Ilina, M.N. Berlov, Ya.A. Dubrovsky, E.G. Bogomolova, V.N. Kokryakov // Vestnik of Saint Petersburg University. Series 3. Biology. — 2013. — № 2. — C. 56–63.

30. Yuhnev, V.A. Search of novel antimicrobial peptides of the cathelicidins and defensins families in moose (Alcesalces). / V.A. Yuhnev, M.A. Shartukova, N.V. Lugovkina, V.N. Kokryakov, O.V. Shamova // Vestnik of Saint Petersburg University. Series 3. Biology. — 2014. — № 1. — C. 115–131.

31. Wan, J. Recombinant plectasin elicits similar improvements in the performance and intestinal mucosa growth and activity in weaned pigs as an antibiotic. / J. Wan, Y. Li, D. Chen, B. Yu, G. Chen, P. Zheng, X. Mao, J. Yu, J. He // Animal Feed Science and Technology.— 2016. — V. 211. — P. 216–226.

32. The Antimicrobial Peptide Database [Электронный ресурс: http://aps.unmc.edu/AP/main.php. Дата обращения: 15.08.2017].

33. Wang, G. A database view of naturally occurring antimi- crobial peptides: nomenclature, classification and amino acid sequence analysis. / G. Wang, X. Li, M. Zasloff // In Wang, G. (ed.)“Antimicrobial Peptides: Discovery, Design and Novel Ther- apeutic Strategies”. CABI, Oxfordshire, UK, 2010: P. 1–21.

34. Bahar, A.A. Antimicrobial peptides. / A.A. Bahar, D. Ren // Pharmaceuticals (Basel).—2013. — V. 6. — № 12. — P. 1543–1575.

35. Brogden, K.A. Antimicrobial peptides: pore formers or meta- bolic inhibitors in bacteria? / K.A. Brogden // Nature Reviews Microbiology.— 2005. — V. 3.— № 3. — P. 238–250.

36. Wang, G. Improved methods for classification, prediction, and design of antimicrobial peptides. / G. Wang // Methods in molecular biology. — 2015. — V. 1268. — P. 43–66.

37. Abaturov, А.Е. Cationic Antimicrobial Peptides of Non-Specific Respiratory Protection: Defensins and Cathelicidins. Defensins — Molecules Undergoing Renaissance (Part 1) / А.Е. Abaturov // Child`s health.— 2011. — V. 7. — № 34. — P. 161–171.

38. Wang, G. Human antimicrobial peptides and proteins. / G. Wang // Pharmaceuticals.— 2014. — V. 7.— № 5. — P. 545–594.

39. Wang, W.M. Effects of whole cigarette smoke on human beta defensins expression and secretion by oral mucosal epithelial cells. / W.M. Wang, P. Ye, Y. — J. Qian // Tobacco induced diseases.— 2015. — V. 13. — № 1. — P. 3.

40. Zhao, L. Defensins in innate immunity. / L. Zhao, W. Lu // Current Opinion in Hematology. — 2014. — V. 21. — № 1. — P. 37–42.

41. Vaschenko, V.I. Antimicrobial and antiviral effects of human defensins: pathogenetic value and prospective application to medicinal therapy. / V.I. Vaschenko, V.N. Vil’yaninov, P.D. Shabanov // Obzory po klinicheskoy farmakologii i lekarstvennoy terapii. — 2016.— № 2. — C.3–37.

42. Jarczak, J. Defensins: Natural component of human innate immunity. / J. Jarczak, E.M. Kościuczuk, P. Lisowski, N. Strzałkowska, A. Jóźwik, J. Horbańczuk, J. Krzyżewski, L. Zwierzchowski, E. Bagnicka // Human Immunology.— 2013. — V. 74.— № 9. — P. 1069–1079.

43. Bosch-Marcé, M. Preclinical safety evaluation of human platelets treated with antimicrobial peptides in severe combined immunodeficient mice. / M. Bosch-Marcé, K.V. Mohan, M.P. Gelderman, P.L. Ryan, E. Russek-Cohen, C.D. Atreya // Transfusion.— 2014. — V.54.— № 3. — P. 569–576.

44. Il’yashenko, M.G. Endogenous antimicrobial peptides and their clinical and pathogenic significance in inflammatory infections of the intestine. / M.G. Il’yashenko, G.N. Tarasova, AI. Guseva //Modern problems of science and education. 2012; 2. [Электронный ресурс: https://www.science-education.ru/ru/article/view?id=5922. Дата обращения: 15.08.2017].

45. Budikhina, A.S. Defensins — multifunctional cations peptides of human. / A.S. Budikhina, B.V. Pinegin // Immunopathology, Allergology, Infectology. — 2008. — № 2. — C. 31–40.

46. Kokryakov VN. Physico-chemical and functional properties of antimicrobial proteins and peptides: Abstract dis. doc. biol. sciences. — Saint-Petersburg, 1995.— 48 p.

47. Shamova OV. Physico-chemical characterization and functional properties of defensins and protegrins: Abstract dis. cand. biol. sciences. — Saint-Petersburg, 1995. — 24 p.

48. Shamova O.V. Molecular and cellular bases of biological activity realization of leukocytes antimicrobial peptides: Abstract dis. doc. biol. sciences. — Saint-Petersburg, 2013.— 48 с.

49. Zharkova M.S. The combined action of innate immune system proteins and peptides and compounds of different chemical nature in the implementation of their antibiotic properties: Abstract dis. cand. biol. sciences. — Saint-Petersburg, 2016.— 24 p.

50. Tecle, T. Review: Defensins and cathelicidins in lung immunity. T. Tecle, S. Tripathi, K.L. Hartshorn // Innate immunity.— 2010. — V. 16.— № 3. — P. 151–159.

51. Skarnes, R.C. Characterization of leukin: an antibacterial factor from leucocytes active against gram-positive pathogens. / R.C. Skarnes, D.W. Watson // The Journal of Experimental Medicine. — 1956. — V. 104. — № 6. — P. 829.

52. Hirsch, J.G. Studies of the bactericidal action of phagocytin / J.G. Hirsch // The Journal of Experimental Medicine. — 1956. — V.103.— № 5. — P. 613

53. Zeya, H.I. Antibacterial and Enzymic Basic Proteins from Leukocyte Lysosomes: Separation and Identification / H.I. Zeya, J.K. Spitznagel // Science. — V. 142. — № 3595. — P. 1085–1087.

54. Selsted, M.E. Primary Structures of Three Human Neutrophil Defensins. / M.E. Selsted, S.S.L. Harwig, T. Ganz, J.W. Schilling, R.1. Lehrer // Journal of Clinical Investigation. — 1985. — V. 76. — P. 1436–1439.

55. De Smet, K. Human Antimicrobial Peptides: Defensins, Cat- helicidins and Histatins. / K. De Smet, R. Contreras // Biotech- nology Letters. — 2005. — V. 27.— № 18. — P. 1337–1347.

56. Uni Prot Protein Database [Электронный ресурс: http://www.uniprot.org/. Дата обращения: 15.08.2017].

57. Abaturov, А.Е. Cationic Antimicrobial Peptides of Non-Spe- cific Respiratory Protection: Defensins and Cathelicidins. Defen- sins — Molecules Undergoing Renaissance (Part 2) / А.Е. Aba- turov // Child`s health.— 2011. — V.5.— № 35. — P. 137–144.

58. Kokryakov, V.N. Biology of antibiotics from animal sources. — St. Petersburg: Nauka, 1999.— 162 p.


Review

For citations:


Lukinova E.A., Kotenkova E.A., Makarenko A.N. ANTIMICROBIAL SUBSTANCES: AN ALTERNATIVE APPROACH TO THE EXTENSION OF SHELF LIFE. Theory and practice of meat processing. 2017;2(3):4-20. https://doi.org/10.21323/2414-438X-2017-2-3-4-20

Views: 1178


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)