Preview

Теория и практика переработки мяса

Расширенный поиск

Effect of Cistus ladaniferus L. essential oil on the microbiological, physicochemical and textural quality of minced chicken patties during refrigeration

https://doi.org/10.21323/2414-438X-2025-10-2-164-176

Аннотация

   This study investigated Cistus ladanifer essential oil (CLEO) as a natural preservative for minced chicken patties during 10-day storage at 4 ± 1 °C. CLEO was applied either directly or encapsulated in sodium alginate beads and compared to controls (sterile water). Encapsulated CLEO demonstrated superior efficacy, reducing total mesophilic bacteria by 2.03 log CFU/g, Enterobacteriaceae by 1.83 log CFU/g, and Pseudomonas spp. by 1.91 log CFU/g versus controls (p < 0.05). It also stabilized pH, maintaining values 1.6 units lower than spoilage thresholds. Color (L*, a*, b*) and texture (hardness, cohesion, springiness) were significantly preserved, with encapsulated CLEO showing 25 % greater texture retention than direct application. The results highlight CLEO’s dual antimicrobial-antioxidant capacity, enhanced by encapsulation and controlled release. While prior research confirmed CLEO’s bioactivity, this is the first demonstration of its meat preservation potential. The findings support CLEO-alginate systems as a clean-label solution for extending poultry shelf life, aligning with industry demand for natural alternatives to synthetic additives.

Об авторах

L. Mohssen
https://www.meatjournal.ru/jour
University of Batnal
Алжир

Laabed Mohssen, Assistant Professor

Institute of Veterinary and Agronomic Sciences; Food Science Laboratory

05000; Batna

Tel.: +21–366–996–43–93



B. Nouri
https://www.meatjournal.ru/jour
University of Batnal
Алжир

Bouslimani Nouri, Associate Professor

Institute of Veterinary and Agronomic Sciences; Department of Agronomy; Food Science Laboratory

050000; Batna

Tel.: +21–356–012–34–98



A. Khemmouli
https://www.meatjournal.ru/jour
Ferhat Abbas University
Алжир

Abdelmounaim Khemmouli, PhD Student

Faculty of Natural and Life Sciences; Department of Agronomic Sciences; Laboratory of Valorisation of Natural Biological Resources

19000; Sétif 1

Tel.:+21–369–870–97–30



Ya. Noui
https://www.meatjournal.ru/jour
University of Batnal
Алжир

Yassine Noui, Associate Professor

Institute of Veterinary and Agronomic Sciences; Food Science Laboratory

05000; Batna

Tel.: +21–366–022–78–57



Список литературы

1. Barbut, S., Leishman, E. M. (2022). Quality and processability of modern poultry meat. Animals, 12(20), Article 2766. doi: 10.3390/ani12202766

2. do Nascimento, L. D., de Moraes, A. A. B., da Costa, K. S., Galúcio, J. M. P., Taube, P. S., Costa, C. M. L. et al. (2020). Bioactive natural compounds and antioxidant activity of essential oils from spice plants: New findings and potential applications. Biomolecules, 10(7), Article 988. doi: 10.3390/biom10070988

3. Shabkhiz, M.A., Pirouzifard, M. K., Mahdavinia, G., Pirsa, S. (2021). Evaluation of release and antibacterial properties of alginate hydrogel containing beta-cyclodextrin nanoparticles loaded with Thymus daenensis essential oil. Journal of Food Science and Technology, 18(115), 49–67. doi: 10.52547/fsct.18.115.5

4. Đorđević, V., Balanč, B., Belščak-Cvitanović, A., Lević, S., Trifković, K., Kalušević, A. et al. (2015). Trends in encapsulation technologies for delivery of food bioactive compounds. Food Engineering Reviews, 7, 452–490. doi: 10.1007/s12393-014-9106-7

5. Iliadi, E., Lamari, F. (2022). Encapsulation of two distinct Cistus essential oils in β-and γ-cyclodextrins. Planta Medica, 88(15), Article 1574. doi: 10.1055/s-0042-1759356

6. Milivojević, M., Popović, A., Pajić-Lijaković, I., Šoštarić, I., Kolašinac, S., Stevanović, Z. D. (2023). Alginate gel-based carriers for encapsulation of carotenoids: On challenges and applications. Gels, 9(8), Article 620. doi: 10.3390/gels9080620

7. Xu, Y., Yan, X., Zheng, H., Li, J., Wu, X., Xu, J. et al. (2024). The application of encapsulation technology in the food Industry: Classifications, recent advances, and perspectives. Food Chemistry: X, 21, Article 101240. doi: 10.1016/j.fochx.2024.101240

8. Miranda-Linares, V., Quintanar-Guerrero, D., Del Real, A., Zambrano-Zaragoza, M. (2020). Spray-drying method for the encapsulation of a functionalized ingredient in alginate-pectin nano-and microparticles loaded with distinct natural actives: Stability and antioxidant effect. Food Hydrocolloids, 101, Article 105560. doi: 10.1016/j.foodhyd.2019.105560

9. Altay, Ö., Köprüalan, Ö., İlter, I., Koç, M., Ertekin, F. K., Jafari, S. M. (2024). Spray drying encapsulation of essential oils; process efficiency, formulation strategies, and applications. Critical Reviews in Food Science and Nutrition, 64(4), 1139–1157. doi: 10.1080/10408398.2022.2113364

10. Gholivand, S., Tan, T. B., Yusoff, M. M., Qoms, M. S., Wang, Y., Liu, Y. et al. (2025). Eco-friendly encapsulation: Investigating plant-based protein-alginate shells for efficient delivery and digestion of hemp seed oil encapsulated via supercritical CO<sub>2</sub> dispersion. Food Chemistry, 463(Part 4), Article 141515. doi: 10.1016/j.foodchem.2024.141515

11. Mazza, K. E. L., Costa, A. M. M., da Silva, J. P. L., Alviano, D. S., Bizzo, H. R., Tonon, R. V. (2023). Microencapsulation of marjoram essential oil as a food additive using sodium alginate and whey protein isolate. International Journal of Biological Macromolecules, 233, Article 123478. doi: 10.1016/j.ijbiomac.2023.123478

12. Bastos, L. P. H., Vicente, J., dos Santos, C. H. C., de Carvalho, M. G., Garcia-Rojas, E. E. (2020). Encapsulation of black pepper (Piper nigrum L.) essential oil with gelatin and sodium alginate by complex coacervation. Food Hydrocolloids, 102(1), Article 105605. doi: 10.1016/j.foodhyd.2019.105605

13. Napiórkowska, A., Kurek, M. (2022). Coacervation as a novel method of microencapsulation of essential oils — A review. Molecules, 27(16), Article 5142. doi: 10.3390/molecules27165142

14. Zalegh, I., Akssira, M., Bourhia, M., Mellouki, F., Rhallabi, N., Salamatullah, A. et al. (2021). A review on Cistus sp.: Phytochemical and antimicrobial activities. Plants, 10(6), Article 1214. doi: 10.3390/plants10061214

15. Amensour, M., Sendra, E., Pérez-Alvarez, J. A., Skali-Senhaji, N., Abrini, J., Fernández-López, J. (2010). Antioxidant activity and chemical content of methanol and ethanol extracts from leaves of rockrose (Cistus ladaniferus). Plant Foods for Human Nutrition, 65, 170–178.

16. Bechlaghem, K., Allali, H., Benmehdi, H., Aissaoui, N., Flamini, G. (2019). Chemical analysis of the essential oils of three Cistus species growing in North-West of Algeria. Agriculturae Conspectus Scientificus, 84(3), 283–293.

17. Barrajón-Catalán, E., Tomás-Menor, L., Morales-Soto, A., Bruñá, N. M., López, D. S., Segura-Carretero, A. et al. (2016). Rockroses (Cistus sp.) oils. Chapter in a book: Essential oils in food preservation, flavor and safety. Academic Press, 2016. doi: 10.1016/B978-0-12-416641-7.00074-2

18. El Karkouri, J., Bouhrim, M., Al Kamaly, O. M., Mechchate, H., Kchibale, A., Adadi, I. et al. (2021). Chemical Composition, Antibacterial and Antifungal Activity of the Essential Oil from Cistus ladanifer L. Plants, 10(10), Article 2068. doi: 10.3390/plants10102068

19. Ahmed, S., Zengin, G., Selvi, S., Ak, G., Cziáky, Z., Jekő, J. et al. (2024). Characterising the metabolomic diversity and biological potentials of extracts from different parts of two Cistus species using UHPLC–MS/MS and in vitro techniques. Pathogens, 13(9), Article 795. doi: 10.3390/pathogens13090795

20. El Kabbaoui, M., Chda, A., El-Akhal, J., Azdad, O., Mejrhit, N., Aarab, L. et al. (2017). Acute and subchronic toxicity studies of the aqueous extract from leaves of Cistus ladaniferus L. in mice and rats. Journal of Ethnopharmacology, 209, 147–156. doi: 10.1016/j.jep.2017.07.029

21. Francisco, A., Alves, S.P., Portugal, P.V., Pires, V.M.R., Dentinho, M.T., Alfaia, C.M. et al. (2016). Effect of feeding lambs with a tanniferous shrub (rockrose) and a vegetable oil blend on fatty acid composition of meat lipids. Animal, 10(12), 2061–2073. doi: 10.1017/S1751731116001129

22. Luong, N.-D. M., Coroller, L., Zagorec, M., Membré, J.-M., Guillou, S. (2020). Spoilage of chilled fresh meat products during storage: A quantitative analysis of literature data. Microorganisms, 8(8), Article 1198. doi: 10.3390/microorganisms8081198

23. Zhao, Y., Liu, R., Qi, C., Li, W., Rifky, M., Zhang, M. et al. (2021). Mixing oil-based microencapsulation of garlic essential oil: Impact of incorporating three commercial vegetable oils on the stability of emulsions. Foods, 10(7), Article 1637. doi: 10.3390/foods10071637

24. Lee, B.-B., Ravindra, P., Chan, E.-S. (2013). Size and shape of calcium alginate beads produced by extrusion dripping. Chemical Engineering and Technology, 36(10), 1627–1642. doi: 10.1002/ceat.201300230

25. Aguirre-Calvo, T. R., Sosa, N., López, T. A., Quintanilla-Carvajal, M. X., Perullini, M., Santagapita, P. R. (2022). Bioaccessibility assay, antioxidant activity and consumer-oriented sensory analysis of Beta vulgaris by-product encapsulated in Ca (II)-alginate beads for different foods. Food Chemistry: Molecular Sciences, 5, Article 100140. doi: 10.1016/j.fochms.2022.100140

26. Parafati, L., Palmeri, R., Trippa, D., Restuccia, C., Fallico, B. (2019). Quality maintenance of beef burger patties by direct addiction or encapsulation of a prickly pear fruit extract. Frontiers in Microbiology, 10, Article 1760. doi: 10.3389/fmicb.2019.01760

27. Allam, A. Y. F., Dolganova, N.V., Kandil, A. A. E. (2021). Functional characteristics of bioactive phytochemicals in Beta vulgaris L. root and their application as encapsulated additives in meat products. Carpathian Journal of Food Science and Technology, 13(4), 173–191. doi: 10.34302/crpjfst/2021.13.4.14

28. Witte, F., Sawas, E., Berger, L. M., Gibis, M., Weiss, J., Röser, A. et al. (2022). Influence of finely chopped meat addition on quality parameters of minced meat. Applied Sciences, 12(20), Article 10590. doi: 10.3390/app122010590

29. Ziomek, M., Drozd, Ł., Gondek, M., Pyz-Łukasik, R., Pedonese, F., Florek, M. et al. (2021). Microbiological changes in meat and minced meat from beavers (Castor fiber L.) during refrigerated and frozen storage. Foods, 10(6), Article 1270. doi: 10.3390/foods10061270

30. Stoops, J., Ruyters, S., Busschaert, P., Spaepen, R., Verreth, C., Claes, J. et al. (2015). Bacterial community dynamics during cold storage of minced meat packaged under modified atmosphere and supplemented with different preservatives. Food Microbiology, 48, 192–199. doi: 10.1016/j.fm.2014.12.012

31. Orkusz, A., Rampanti, G., Michalczuk, M., Orkusz, M., Foligni, R. (2024). Impact of refrigerated storage on microbial growth, color stability, and pH of turkey thigh muscles. Microorganisms, 12(6), Article 1114. doi: 10.3390/microorganisms12061114

32. Abd El-Ghany, W. A. (2021). Pseudomonas aeruginosa infection of avian origin: Zoonosis and one health implications. Veterinary World, 14(8), 2155–2159. doi: 10.14202/vetworld.2021.2155-2159

33. Wang, X., Wang, Z., Sun, Z., Wang, D., Liu, F., Lin, L. (2022). In vitro and in situ characterization of psychrotrophic spoilage bacteria recovered from chilled chicken. Foods, 12(1), Article 95. doi: 10.3390/foods12010095

34. Bueno, L. O., Massingue, A. A., Ramos, A. d. L. S., Ferreira, D. D., Ramos, E. M. (2024). Meat color by numbers: Evaluation of the myoglobin redox forms by different methods and its relationship to CIE color indices. Journal of Food Composition and Analysis, 133, Article 106365. doi: 10.1016/j.jfca.2024.106365

35. Karimi Alavijeh, D., Heli, B., Ajji, A. (2024). Development of a sensitive colorimetric indicator for detecting beef spoilage in smart packaging. Sensors, 24(12), Article 3939. doi: 10.3390/s24123939

36. Oussalah, M., Caillet, S., Lacroix, M. (2006). Mechanism of action of Spanish oregano, Chinese cinnamon, and savory essential oils against cell membranes and walls of Escherichia coli O157: H7 and Listeria monocytogenes. Journal of Food Protection, 69(5), 1046–1055. doi: 10.4315/0362-028x-69.5.1046

37. Parcheta, M., Świsłocka, R., Orzechowska, S., Akimowicz, M., Choińska, R., Lewandowski, W. (2021). Recent developments in effective antioxidants: The structure and antioxidant properties. Materials, 14(8), Article 1984. doi: 10.3390/ma14081984

38. Özvural, E. B., Huang, Q., Chikindas, M. L. (2016). The comparison of quality and microbiological characteristic of hamburger patties enriched with green tea extract using three techniques: Direct addition, edible coating and encapsulation. LWT-Food Science and Technology, 68, 385–390. doi: 10.1016/j.lwt.2015.12.036

39. Mehaya, F. M., Salem, S. H., Mohammad, A. A., Amer, H. M., Kang, W. (2024). Microencapsulated oregano essential oil as a natural preservative of beef burger during refrigerated storage. Journal of Food Quality, 2024(1), Article 8012877. doi: 10.1155/2024/8012877

40. Lu, H., Shao, X., Cao, J., Ou, C., Pan, D. (2016). Antimicrobial activity of eucalyptus essential oil against Pseudomonas in vitro and potential application in refrigerated storage of pork meat. International Journal of Food Science and Technology, 51(4), 994–1001. doi: 10.1111/ijfs.13052

41. Behbahani, B. A., Mehrnia, M., Barzegar, H., Tanavar, H. (2021). Effects of Plantago lanceolata and Sclerorhachis platyrachis essential oil coating on the physicochemical, microbiological and sensory characteristics of veal during storage. (In Arabic)

42. Yu, H., Ma, Z., Wang, J., Lu, S., Cao, D., Wu, J. (2023). Effects of thyme essential oil microcapsules on the antioxidant and quality characteristics of mutton patties. Foods, 12(20), Article 3758. doi: 10.3390/foods12203758

43. Farina, P., Ascrizzi, R., Bedini, S., Castagna, A., Flamini, G., Macaluso, M. et al. (2022). Chitosan and essential oils combined for beef meat protection against the oviposition of Calliphora vomitoria, water loss, lipid peroxidation, and colour changes. Foods, 11(24), Article 3994. doi: 10.3390/foods11243994

44. Al-Hijazeen, M., Lee, E. J., Mendonca, A., Ahn, D. U. (2016). Effect of oregano essential oil (Origanum vulgare subsp. hirtum) on the storage stability and quality parameters of ground chicken breast meat. Antioxidants, 5(2), Article 18. doi: 10.3390/antiox5020018

45. Zhang, M., Yan, W., Wang, D., Xu, W. (2020). Effect of myoglobin, hemin, and ferric iron on quality of chicken breast meat. Animal Bioscience, 34(8), 1382–1391. doi: 10.5713/ajas.20.0529


Рецензия

Для цитирования:


Mohssen L., Nouri B., Khemmouli A., Noui Ya. Effect of Cistus ladaniferus L. essential oil on the microbiological, physicochemical and textural quality of minced chicken patties during refrigeration. Теория и практика переработки мяса. 2025;10(2):164-176. https://doi.org/10.21323/2414-438X-2025-10-2-164-176

For citation:


Mohssen L., Nouri B., Khemmouli A., Noui Ya. Effect of Cistus ladaniferus L. essential oil on the microbiological, physicochemical and textural quality of minced chicken patties during refrigeration. Theory and practice of meat processing. 2025;10(2):164-176. https://doi.org/10.21323/2414-438X-2025-10-2-164-176

Просмотров: 40


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)