Preview

Theory and practice of meat processing

Advanced search

Proteolytic activity of Sechium edule, Cosmos caudatus, Medicago sativa in meat tenderization

https://doi.org/10.21323/2414-438X-2025-10-1-45-53

Abstract

The number of plant proteases that still not applied is the subject of this research. This study was to test the effectiveness of plant protease in Sechium edule, Cosmos caudatus Kunth, and Medicago sativa L. in meat tenderization. The research included goat meat and beef that was sprinkled with extracts (15% w/w) of chayote fruit (Sechium edule), kenikir leaf (Cosmos caudatus Kunth), and Alfalfa sprout extract (Medicago sativa L.). The process was carried out at 50°С, for 30 and 60 min. SDS-PAGE (sodium dodecyl sulfate–polyacrylamide gel electrophoresis) analysis was performed to see the degradation zone, while SEM (scanning electron methods) analysis was performed to inspect the condition of the meat connective tissue. The findings of the study showed that all three plant proteases were able to tenderize beef and goat meat. Cosmos caudatus Kunth extract showed the highest effectiveness in degrading beef proteins in the zone of 10–22 kDa (small peptide — troponin I) and α and β tropomyosin (33 kDa) with VMax = 0.134 µg/µL/min and KM = 17.05 µg/µL. In goat meat, the extract was only able to degrade the small peptide area and troponin C (10–17.5 kDa; VMax = 0.087 µg/µL/min; KM = 7.23 µg/µL). Conclusion: all three plant proteases proved to be effective in the process of beef and goat meat tenderization.

About the Authors

B. Budianto
Chemical Engineering Department, Institute Sains and Technology Al-Kamal
Indonesia

Budianto B. - Doctor, Lecturer, Chemical Engineering Department, Institute of Science and Technology Al Kamal.

Jalan Raya Al-Kamal, No. 2, Kebon Jeruk. Jakarta. Tel.: +628–138–584–71–37



Z. O. Feri
Universitas Negeri Yogyakarta
Indonesia

Zefki Okta Feri - PhD Student in Language Education Science, Yogyakarta State University.

Sleman Regency Kampus Karang malang Yogyakarta, Sleman, 55281 Yogyakarta SR,Tel.: +628–523–108–37–16



A. Suparmi
Universitas Negeri Yogyakarta; SMA Negeri 4 Tarakan
Indonesia

Anik Suparmi - M. Pd, Student in Education Biologi, Yogyakarta State University.

Sleman Regency Kampus Karang malang Yogyakarta, Sleman, 55281 Yogyakarta SR Teacher, SMA Negeri 4 Tarakan. 8H2Q+C88, Selumit, Tarakan Tengah, City, North Kalimantan, Tel.: +628–524–779–44–18



References

1. Schaller, A., Stintzi, A., Rivas, S., Serrano, I., Chichkova, N. V., Vartapetian, A. B. et al. (2017). From structure to function — a family portrait of plant subtilases. New Phytologist, 218(3), 901–915. https://doi.org/10.1111/nph.14582

2. Tantamacharik, T., Carne, A., Agyei, D., Birch, J., Bekhit, A.E.-D.A. (2018). Use of plant proteolytic enzymes for meat processing. Chapter in a book: Biotechnological Applications of Plant Proteolytic Enzymes. Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-97132-2_3

3. Clemente, M., Corigliano, M. G., Pariani, S. A., Sánchez-López, E. F., Sander, V. A., Ramos-Duarte, V. A. (2019). Plant serine protease inhibitors: Biotechnology application in agriculture and molecular farming. International Journal of Molecular Sciences, 20(6), Article 1345. https://doi.org/10.3390/ijms20061345

4. Alavi, F., Momen, S. (2020). Aspartic proteases from thistle flowers: Traditional coagulants used in the modern cheese industry. International Dairy Journal, 107, Article 104709. https://doi.org/10.1016/j.idairyj.2020.104709

5. Bažok, R., Igrc Barčić, J., Edwards, C. R. (2005). Effects of proteinase inhibitors on western corn rootworm life parameters. Journal of Applied Entomology, 129(4), 185–190. https://doi.org/10.1111/j.1439-0418.2005.00951.x

6. Dong, T., Cao, Y., Li, G., Zhu, Z., Zhang, S., Jiang, C.-Z. et al. (2021). A novel aspartic protease inhibitor inhibits the enzymatic browning of potatoes. Postharvest Biology and Technology, 172, Article 111353. https://doi.org/10.1016/j.postharvbio.2020.111353

7. Guo, R., Zhao, J., Wang, X., Guo, C., Li, Z., Wang, Y. et al. (2014). Constitutive expression of a grape aspartic protease gene in transgenic Arabidopsis confers osmotic stress tolerance. Plant Cell, Tissue and Organ Culture (PCTOC), 121(2), 275–287. https://doi.org/10.1007/s11240-014-0699-6

8. James, M., Poret, M., Masclaux-Daubresse, C., Marmagne, A., Coquet, L., Jouenne, T. et al. (2018). SAG12, a Major cysteine protease involved in nitrogen allocation during senescence for seed production in arabidopsis thaliana. Plant and Cell Physiology, 59(10), 2052–2063. https://doi.org/10.1093/pcp/pcy125

9. Yu, C., Cha, Y., Wu, F., Xu, X., Qin, L., Du, M. (2017). Molecular cloning and functional characterization of cathepsin D from sea cucumber Apostichopus japonicus. Fish and Shellfish Immunology, 70, 553–559. https://doi.org/10.1016/j.fsi.2017.09.011

10. Sannaningaiah, D., Nandish, S. M., Kengaiah, J., Ramachandraiah, C., Shivaiah, A., Girish, K. et al. (2018). Anticoagulant, antiplatelet and fibrin clot hydrolyzing activities of flax seed buffer extract. Pharmacognosy Magazine, 14(55s), s175-s183. https://doi.org/10.4103/pm.pm_320_17

11. Dzuvor, C. K. O., Taylor, J. T., Acquah, C., Pan, S., Agyei, D. (2018). Bioprocessing of Functional Ingredients from Flaxseed. Molecules, 23(10), Article 2444. https://doi.org/10.3390/molecules23102444

12. Flinn, B. S. (2008). Plant extracellular matrix metalloproteinases. Functional Plant Biology, 35(12), Article 1183. https://doi.org/10.1071/fp08182

13. Mielke, K., Wagner, R., Mishra, L. S., Demir, F., Perrar, A., Huesgen, P. F. et al. (2020). Abundance of metalloprotease FtsH12 modulates chloroplast development in Arabidopsis thaliana. Journal of Experimental Botany, 72(9), 3455–3473. https://doi.org/10.1093/jxb/eraa550

14. Sedaghatmehr, M., Mueller-Roeber, B., Balazadeh, S. (2016). The plastid metalloprotease FtsH6 and small heat shock protein HSP21 jointly regulate thermomemory in Arabidopsis. Nature Communications, 7(1), Article 12439. https://doi.org/10.1038/ncomms12439

15. Zhao, P., Zhang, F., Liu, D., Imani, J., Langen, G., Kogel, K.-H. (2017). Matrix metalloproteinases operate redundantly in Arabidopsis immunity against necrotrophic and biotrophic fungal pathogens. PLOS ONE, 12(8), Article e0183577. https://doi.org/10.1371/journal.pone.0183577

16. Lima, L. M. S., Okamoto, D. N., Passarini, M. R. Z., Gonçalves, S. S., Goldman, G. H., Silveira, M. A. V. et al. (2021). Enzymatic diversity of filamentous fungi isolated from forest soil incremented by sugar cane solid waste. Environmental Technology, 43(20), 3037–3046. https://doi.org/10.1080/09593330.2021.1914179

17. Rault, L. C., Siegfried, B. D., Gassmann, A. J., Wang, H., Brewer, G. J., Miller, N. J. (2018). Investigation of Cry3Bb1 resistance and intoxication in western corn rootworm by RNA sequencing. Journal of Applied Entomology, 142(10), 921–936. https://doi.org/10.1111/jen.12502

18. Utrilla, M. P., Peinado, M. J., Ruiz, R., Rodriguez‐Nogales, A., Algieri, F., Rodriguez‐Cabezas, M. E. et al. (2015). Pea (Pisum sativum L.) seed albumin extracts show anti‐inflammatory effect in the DSS model of mouse colitis. Molecular Nutrition and Food Research, 59(4), 807–819. https://doi.org/10.1002/mnfr.201400630

19. Jones, B. L., Lookhart, G. L. (2005). Comparison of endoproteinases of various grains. Cereal Chemistry, 82(2), 125–130. https://doi.org/10.1094/cc-82-0125

20. Guo, F., Pan, L., Liu, H., Lv, L., Chen, X., Liu, Y. (2022). Whole-genome metalloproteases in the wheat sharp eyespot pathogen rhizoctonia cerealis and a role in fungal virulence. International Journal of Molecular Sciences, 23(18), Article 10691. https://doi.org/10.3390/ijms231810691

21. Dąbrowska, A., Szołtysik, M., Babij, K., Pokora, M., Zambrowicz, A., Chrzanowska, J. (2013). Application of Asian pumpkin (Cucurbita ficifolia) serine proteinase for production of bio logically active peptides from casein. Acta Biochimica Polonica, 60(1), 117–122. https://doi.org/10.18388/abp.2013_1960

22. Lambré, C., Barat Baviera, J. M., Bolognesi, C., Cocconcelli, P. S., Crebelli, R., Gott, D. M. et al. (2022). Safety evaluation of the food enzyme phytepsin from Cynara cardunculus L. EFSA Journal, 20(12), Article 7681. https://doi.org/10.2903/j.efsa.2022.7681

23. Budianto, B., Arifin, M. J., Naryani, N., Sukmawati, E., Suwaji, S., Wibowo, T. H. M. et al. (2024). Plant proteases and antibacterial substances in Allium sativum L. varieties. Foods and Raw Materials, 12(2), 240–248. https://doi.org/10.21603/2308-4057-2024-2-606

24. Manzoor, M., Singh, J., Ray, A., Gani, A. (2021). Recent advances in analysis of food proteins.Chapter in a book: Food Biopolymers: Structural, Functional and Nutraceutical Properties. Springer Cham, 2021. https://doi.org/10.1007/978-3-030-27061-2_12

25. Souza, P. M., Aliakbarian, B., Filho, E. X. F., Magalhães, P. O., Junior, A. P., Converti, A. et al. (2015). Kinetic and thermodynamic studies of a novel acid protease from Aspergillus foetidus. International Journal of Biological Macromolecules, 81, 17–21. https://doi.org/10.1016/j.ijbiomac.2015.07.043

26. AOAC. (2010). Official Methods of Analysis of the Association of Official Analytical Chemists. 17th ed. Association of Official Analytical Chemists Washington, DC, 2010.

27. Koga, D., Kusumi, S., Shibata, M., Watanabe, T. (2021). Applications of scanning electron microscopy using secondary and backscattered electron signals in neural structure. Frontiers in Neuroanatomy, 15, Article 759804. https://doi.org/10.3389/fnana.2021.759804

28. Mohd Azmi, S., Kumar, P., Sharma, N., Sazili, A., Lee, S.-J., Ismail-Fitry, M. (2023). Application of plant proteases in meat tenderization: Recent trends and future prospects. Foods, 12(6), Article 1336. https://doi.org/10.3390/foods12061336

29. Gupta, S., Kanwar S. S. (2021). Plant protease inhibitors and their antiviral activities-Potent therapeutics for SARS CoV-2. Journal of Medical Discovery, 6(1), Article jmd2068.

30. Babalola, B. A., Akinwande, A. I., Gboyega, A. E., Otunba, A. A. (2023). Extraction, purification and characterization of papain cysteine-proteases from the leaves of Carica papaya. Scientific African, 19, Article e01538. https://doi.org/10.1016/j.sciaf.2022.e01538

31. Yang, Y., Shen, D., Long, Y., Xie, Z., Zheng, H. (2017). Intrinsic peroxidase-like activity of ficin. Scientific Reports, 7(1), Article 43141. https://doi.org/10.1038/srep43141

32. Darmawati, S., Kartika, A. I., Aulia, D. I., Handayani, W., Aziz, I. R. (2022). Microstructural and protein subunit analysis: The effect of protease from chayote, pineapple peel and biduri leaves as natural tenderizer on mutton, beef and buff. Trends in Sciences, 20(3), Article 6519. https://doi.org/10.48048/tis.2023.6519

33. Astruc, T. (2014). Connective tissue: Structure, function, and influence on meat quality. Chapter in a book: Encyclopedia of Meat Sciences (Second Edition). Academic Press, 2014. https://doi.org/10.1016/b978-0-12-384731-7.00186-0

34. Latorre, M. E., Velázquez, D. E., Purslow, P. P. (2018). The thermal shrinkage force in perimysium from different beef muscles is not affected by post-mortem ageing. Meat Science, 135, 109–114. https://doi.org/10.1016/j.meatsci.2017.09.003

35. Swasdison, S., Mayne, R. (1992). Formation of highly organized skeletal muscle fibers in vitro Comparison with muscle development in vivo. Journal of Cell Science, 102(3), 643–652. https://doi.org/10.1242/jcs.102.3.643


Review

For citations:


Budianto B., Feri Z.O., Suparmi A. Proteolytic activity of Sechium edule, Cosmos caudatus, Medicago sativa in meat tenderization. Theory and practice of meat processing. 2025;10(1):45-53. https://doi.org/10.21323/2414-438X-2025-10-1-45-53

Views: 1001


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)