Preview

Theory and practice of meat processing

Advanced search

Mutagenic and/or carcinogenic compounds in meat and meat products: polycyclic aromatic hydrocarbons perspective

  E. Oz

https://doi.org/10.21323/2414-438X-2022-7-4-282-287

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental contaminants posing a great risk to human health due to their mutagenic and/or carcinogenic properties. They are produced from incomplete combustion of a heat source, pyrolysis of organic components, and fat-induced flame formation. Meat and meat products are one of the major sources of PAH exposure. Since PAH intake increases the risk of cancer, understanding the factors affecting PAH formation in meat and meat products is very important within the scope of PAH exposure reduction strategies. In this study, the features and formation of PAHs, the factors affecting the formation of PAH compounds and their reduction/inhibition pathways were reviewed in order to provide a perspective on the presence of PAHs in meat and meat products.

About the Author

E. Oz
Ataturk University
Turkey

Emel Oz, PhD, Associate Professor, Department of Food Engineering, Faculty of Agriculture

25240, Erzurum



References

1. Plaza-Bolaños, P., Frenich, A. G., Vidal, J. L. M. (2010). Polycyclic aromatic hydrocarbons in food and beverages. Analytical methods and trends. Journal of Chromatography A, 1217(41), 6303–6326. https://doi.org/10.1016/j.chroma.2010.07.079

2. Oz, E. (2020). Effects of smoke flavoring using different wood chips and barbecuing on the formation of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines in salmon fillets. PLoS One, 15(1), Article e0227508. https://doi.org/10.1371/journal.pone.0227508

3. Oz, E. (2021). The presence of polycyclic aromatic hydrocarbons and heterocyclic aromatic amines in barbecued meatballs formulated with different animal fats. Food Chemistry, 352, Article 129378. https://doi.org/10.1016/j.foodchem.2021.129378

4. Purcaro, G., Moret, S., Conte, L. S. (2013). Overview on polycyclic aromatic hydrocarbons: Occurrence, legislation and innovative determination in foods. Talanta, 105, 292–305. https://doi.org/10.1016/j.talanta.2012.10.041

5. Bogdanović, T., Pleadin, J., Petričević, S., Listeš, E., Sokolić, D., Marković, K. et al. (2019). The occurrence of polycyclic aromatic hydrocarbons in fish and meat products of Croatia and dietary exposure. Journal of Food Composition and Analysis, 75, 49–60. https://doi.org/10.1016/j.jfca.2018.09.017

6. Storelli, M. M., Stuffler, R. G., Marcotrigiano, G. O. (2003). Polycyclic aromatic hydrocarbons, polychlorinated biphenyls, chlorinated pesticides (DDTs), hexachlorocyclohexane, and hexachlorobenzene residues in smoked seafood. Journal of Food Protection, 66(6), 1095–1099. https://doi.org/10.4315/0362–028X-66.6.1095

7. Li, Y., Wang, C., Zou, X., Feng, Z., Yao, Y., Wang, T. et al. (2019). Occurrence of polycyclic aromatic hydrocarbons (PAHs) in coral reef fish from the South China Sea. Marine Pollution Bulletin, 139, 339–345. https://doi.org/10.1016/j.marpolbul.2019.01.001

8. Singh, L., Agarwal, T., Simal-Gandara, J. (2020). PAHs, diet and cancer prevention: Cooking process driven-strategies. Trends in Food Science and Technology, 99, 487–506. https://doi.org/10.1016/j.tifs.2020.03.030

9. Wang, L., Li, C., Jiao, B., Li, Q., Su, H., Wang, J. et al. (2018). Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: levels, dietary intakes, and health risk assessments. Science of the Total Environment, 616–617, 288–295. https://doi.org/10.1016/j.scitotenv.2017.10.336

10. Sun, Y., Wu, S., Gong, G. (2019). Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends in Food Science and Technology, 83, 86–98. https://doi.org/10.1016/j.tifs.2018.11.015

11. Rose, M., Holland, J., Dowding, A., Petch, S. R. G., White, S., Fernandes, A. et al. (2015). Investigation into the formation of PAHs in foods prepared in the home to determine the effects of frying, grilling, barbecuing, toasting and roasting. Food and Chemical Toxicology, 78, 1–9. https://doi.org/10.1016/j.fct.2014.12.018

12. Oz, E. (2021). The impact of fat content and charcoal types on quality and the development of carcinogenic polycyclic aromatic hydrocarbons and heterocyclic aromatic amines formation of barbecued fish. International Journal of Food Science and Technology, 56(2), 954–964. https://doi.org/10.1111/ijfs.14748

13. Zelinkova, Z., Wenzl, T. (2015). The occurrence of 16 EPA PAHs in food — A review. Polycyclic Aromatic Compounds, 35(2–4), 248– 284. https://doi.org/10.1080/10406638.2014.918550

14. Duedahl-Olesen, L., Ionas, A. C. (2022). Formation and mitigation of PAHs in barbecued meat — a review. Critical Reviews in Food Science and Nutrition, 62(13), 3553–3568. https://doi.org/10.1080/10408398.2020.1867056

15. Onopiuk, A., Kołodziejczak, K., Szpicer, A., Wojtasik-Kalinowska, I., Wierzbicka, A., Półtorak, A. (2021). Analysis of factors that influence the PAH profile and amount in meat products subjected to thermal processing. Trends in Food Science and Technology, 115, 366–379. https://doi.org/10.1016/j.tifs.2021.06.043

16. Rengarajan, T., Rajendran, P., Nandakumar, N., Lokeshkumar, B., Rajendran, P., Nishigaki, I. (2015). Exposure to polycyclic aromatic hydrocarbons with special focus on cancer. Asian Pacific Journal of Tropical Biomedicine, 5(3), 182–189. https://doi.org/10.1016/S2221–1691(15)30003–4

17. Cross, A. J., Freedman, N. D., Ren, J., Ward, M. H., Hollenbeck, A. R., Schatzkin, A. et al. (2011). Meat consumption and risk of esophageal and gastric cancer in a large prospective study. The American Journal of Gastroenterology, 106(3), 432–442. https://doi.org/10.1038/ajg.2010.415

18. Zhu, Z., Xu, Y., Huang, T., Yu, Y., Bassey, A. P., Huang, M. (2022). The contamination, formation, determination and control of polycyclic aromatic hydrocarbons in meat products. Food Control, 141, Article 109194. https://doi.org/10.1016/j.food-cont.2022.109194

19. IARC (International Agency for Research on Cancer). (2010). Some non-heterocyclic polycyclic aromatic hydrocarbons and some related exposures. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, France, 2010.

20. EPA (Environmental Protection Agency). (2008). Polycyclic aromatic hydrocarbons (PAHs) — EPA fact sheet. Washington (DC): National Center for Environmental Assessment, Office of Research and Development, 2008.

21. Abdel-Shafy, H. I., Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

22. Daniel, C. R., Schwartz, K. L., Colt, J. S., Dong, L. M., Ruterbusch, J. J., Purdue, M. P. et al. (2011). Meat-cooking mutagens and risk of renal cell carcinoma. British Journal of Cancer, 105(7), 1096–1104. https://doi.org/10.1038/bjc.2011.343

23. Alomirah, H., Al-Zenki, S., Al-Hooti, S., Zaghloul, S., Sawaya, W., Ahmed, N. et al. (2011). Concentrations and dietary exposure to polycyclic aromatic hydrocarbons (PAHs) from grilled and smoked foods. Food Control, 22(12), 2028–2035. https://doi.org/10.1016/j.foodcont.2011.05.024

24. Ledesma, E., Rendueles, M., Díaz, M. J. F. C. (2016). Contamination of meat products during smoking by polycyclic aromatic hydrocarbons: Processes and prevention. Food Control, 60, 64– 87. https://doi.org/10.1016/j.foodcont.2015.07.016

25. EFSA. (2008). Scientific opinion of the panel on contaminants in the food chain on a request from the European Commission on Polycyclic Aromatic Hydrocarbons in Food. The EFSA Journal, 724, 1–114.

26. Commission Regulation (EU). (2011). No: 835/2011 of 19 August 2011 amending Regulation (EC) No: 1881/2006 as regards maximum levels for polycyclic aromatic hydrocarbons in foodstuff.

27. Perelló, G., Martí-Cid, R., Castell, V., Llobet, J. M., Domingo, J. L. (2009). Concentrations of polybrominated diphenyl ethers, hexachlorobenzene and polycyclic aromatic hydrocarbons in various foodstuffs before and after cooking. Food and Chemical Toxicology, 47(4), 709–715. https://doi.org/10.1016/j.fct.2008.12.030

28. Chung, S. Y., Yettella, R. R., Kim, J. S., Kwon, K., Kim, M. C., Min, D. B. (2011). Effects of grilling and roasting on the levels of polycyclic aromatic hydrocarbons in beef and pork. Food Chemistry, 129(4), 1420–1426. https://doi.org/10.1016/j.foodchem.2011.05.092

29. Olatunji, O. S., Fatoki, O. S., Ximba, B. J., Opeolu, B. O. (2014). Polycyclic aromatic hydrocarbons (PAHs) in edible oil: temperature effect on recovery from base hydrolysis product and health risk factor. Food and Public Health, 4(2), 23–30. https://doi.org/10.5923/j.fph.20140402.02

30. Oz, F., Yuzer, M. O. (2016). The effects of cooking on wire and stone barbecue at different cooking levels on the formation of heterocyclic aromatic amines and polycyclic aromatic hydrocarbons in beef steak. Food Chemistry, 203, 59–66. https://doi.org/10.1016/j.foodchem.2016.02.041

31. Büyükkurt, O. K., Dinçer, E. A., Çam, I. B., Candal, C., Erbaş, M. (2017). The influence of cooking methods and some marinades on polycyclic aromatic hydrocarbon formation in beef meat. Polycyclic Aromatic Compounds, 40(2), 195–205. https://doi.org/10.1080/10406638.2017.1392328

32. Singh, L., Varshney, J. G., Agarwal, T. (2016). Polycyclic aromatic hydrocarbons’ formation and occurrence in processed food. Food Chemistry, 199, 768–781. https://doi.org/10.1016/j.foodchem.2015.12.074

33. Onyango, A. A., Lalah, J. O., Wandiga, S. O. (2012). The effect of local cooking methods on polycyclic aromatic hydrocarbons (PAHs) contents in beef, goat meat, and pork as potential sources of human exposure in Kisumu city, Kenya. Polycyclic Aromatic Compounds, 32(5), 656–668. https://doi.org/10.1080/10406638.2012.725195

34. El-Badry, N. (2010). Effect of household cooking methods and some food additives on polycyclic aromatic hydrocarbons (PAHs) formation in chicken meat. World Applied Sciences Journal, 9(9), 963–974.

35. Wretling, S., Eriksson, A., Eskhult, G. A., Larsson, B. (2010). Polycyclic aromatic hydrocarbons (PAHs) in Swedish smoked meat and fish. Journal of Food Composition and Analysis, 23(3), 264–272. https://doi.org/10.1016/j.jfca.2009.10.003

36. Akpambang, V. O. E., Purcaro, G., Lajide, L., Amoo, I. A., Conte, L. S., Moret, S. (2009). Determination of polycyclic aromatic hydrocarbons (PAHs) in commonly consumed Nigerian smoked/grilled fish and meat. Food Additives and Contaminants: Part A, 26(7), 1096–1103. https://doi.org/10.1080/02652030902855406

37. Wegrzyn, E., Grzeskiewicz, S., Poplawska, W., Glod, B. K. (2006). Modified analytical method for polycyclic aromatic hydrocarbons, using sec for sample preparation and RP-HPLC with fluorescence detection. Application to different food samples. Acta Chromatographica, 17, 233.

38. Kao, T. H., Chen, S., Huang, C. W., Chen, C. J., Chen, B. H. (2014). Occurrence and exposure to polycyclic aromatic hydrocarbons in kindling-free-charcoal grilled meat products in Taiwan. Food and Chemical Toxicology, 71, 149–158. https://doi.org/10.1016/j.fct.2014.05.033

39. Pöhlmann, M., Hitzel, A., Schwägele, F., Speer, K., Jira, W. (2013). Polycyclic aromatic hydrocarbons (PAH) and phenolic substances in smoked Frankfurter-type sausages depending on type of casing and fat content. Food Control, 31(1), 136–144. https://doi.org/10.1016/j.foodcont.2012.09.030

40. Chen, B. H., Chen, Y. C. (2001). Formation of polycyclic aromatic hydrocarbons in the smoke from heated model lipids and food lipids. Journal of Agricultural and Food Chemistry, 49(11), 5238–5243. https://doi.org/10.1021/jf0106906

41. Kao, T. H., Chen, S., Chen, C. J., Huang, C. W., Chen, B. H. (2012). Evaluation of analysis of polycyclic aromatic hydrocarbons by the QuEChERS method and gas chromatography–mass spectrometry and their formation in poultry meat as affected by marinating and frying. Journal of Agricultural and Food Chemistry, 60(6), 1380–1389. https://doi.org/10.1021/jf204650u

42. Pan, H., Cao, Y. (2010). Optimization of pretreatment procedures for analysis of polycyclic aromatic hydrocarbons in charcoal-grilled pork. Analytical Letters, 43(1), 97–109. https://doi.org/10.1080/00032710903276497

43. Ahmad Kamal, N. H., Selamat, J., Sanny, M. (2018). Simultaneous formation of polycyclic aromatic hydrocarbons (PAHs) and heterocyclic aromatic amines (HCAs) in gas-grilled beef satay at different temperatures. Food Additives and Contaminants: Part A, 35(5), 848–869. https://doi.org/10.1080/19440049.2018.1425553

44. Szterk, A. (2015). Acridine derivatives (PANHs, azaarenes) in raw, fried or grilled pork from different origins, and PANH formation during pork thermal processing. Journal of Food Composition and Analysis, 43, 18–24. https://doi.org/10.1016/j.jfca.2015.04.011

45. Hokkanen, M., Luhtasela, U., Kostamo, P., Ritvanen, T., Peltonen, K., Jestoi, M. (2018). Critical effects of smoking parameters on the levels of polycyclic aromatic hydrocarbons in traditionally smoked fish and meat products in Finland. Journal of Chemistry, 2018, Article 2160958. https://doi.org/10.1155/2018/2160958

46. Roseiro, L. C., Gomes, A., Santos, C. (2011). Influence of processing in the prevalence of polycyclic aromatic hydrocarbons in a Portuguese traditional meat product. Food and Chemical Toxicology, 49(6), 1340–1345. https://doi.org/10.1016/j.fct.2011.03.017

47. CAC/RCP 68 (2009). Codex alimentarius commission (CAC). Code of practice for the reduction of contamination of food with polycyclic aromatic hydrocarbons (PAH) from smoking and direct drying processes.

48. Viegas, O., Novo, P., Pinto, E., Pinho, O., Ferreira, I. M. P. L. V. O. (2012). Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food and Chemical Toxicology, 50(6), 2128–2134. https://doi.org/10.1016/j.fct.2012.03.051

49. Hamzawy, A. H., Khorshid, M., Elmarsafy, A. M., Souaya, E. R. (2016). Estimated daily intake and health risk of polycyclic aromatic hydrocarbon by consumption of grilled meat and chicken in Egypt. International Journal of Current Microbiology and Applied Sciences, 5(2), 435–448. http://doi.org/10.20546/ijcmas.2016.502.049

50. Terzi, G., Celik, T. H., Nisbet, C. (2008). Determination of benzo[a] pyrene in Turkish döner kebab samples cooked with charcoal or gas fire. Irish Journal of Agricultural and Food Research, 47(2), 187–193.

51. Stumpe-Vīksna, I., Bartkevičs, V., Kukāre, A., Morozovs, A. (2008). Polycyclic aromatic hydrocarbons in meat smoked with different types of wood. Food Chemistry, 110(3), 794–797. http://doi.org/10.1016/j.foodchem.2008.03.004

52. Yildiz-Turp, G., Sengun, I. Y., Kendirci, P., Icier, F. (2013). Effect of ohmic treatment on quality characteristic of meat: A review. Meat Science, 93(3), 441–448. http://doi.org/10.1016/j.meatsci.2012.10.013

53. Sengun, I. Y., Yildiz-Turp, G., Icier, F., Kendirci, P., Kor, G. (2014). Effects of ohmic heating for pre-cooking of meatballs on some quality and safety attributes. LWT-Food Science and Technology, 55(1), 232–239. http://doi.org/10.1016/j.lwt.2013.08.005

54. Kendirci, P., Icier, F., Kor, G., Onogur, T. A. (2014). Influence of infrared final cooking on polycyclic aromatic hydrocarbon formation in ohmically pre-cooked beef meatballs. Meat Science, 97(2), 123–129. http://doi.org/10.1016/j.meatsci.2014.01.020

55. Farhadian, A., Jinap, S., Hanifah, H. N., Zaidul, I. S. (2011). Effects of meat preheating and wrapping on the levels of polycyclic aromatic hydrocarbons in charcoal-grilled meat. Food Chemistry, 124(1), 141–146. http://doi.org/10.1016/j.foodchem.2010.05.116

56. Farhadian, A., Jinap, S., Faridah, A., Zaidul, I. S. M. (2012). Effects of marinating on the formation of polycyclic aromatic hydrocarbons (benzo[a]pyrene, benzo[b]fluoranthene and fluoranthene) in grilled beef meat. Food Control, 28(2), 420–425. http://doi.org/10.1016/j.foodcont.2012.04.034

57. McGrath, T. E., Wooten, J. B., Chan, W. G., Hajaligol, M. R. (2007). Formation of polycyclic aromatic hydrocarbons from tobacco: the link between low temperature residual solid (char) and PAH formation. Food and Chemical Toxicology, 45(6), 1039– 1050. http://doi.org/10.1016/j.fct.2006.12.010

58. Rojo Camargo, M. C., Antoniolli, P. R., Vicente, E., Tfouni, S. A. V. (2011). Polycyclic aromatic hydrocarbons in Brazilian commercial soybean oils and dietary exposure. Food Additives and Contaminants: Part B, 4(2), 152–159. https://doi.org/10.1080/19393210.2011.585244

59. Wongmaneepratip, W., Vangnai, K. (2017). Effects of oil types and pH on carcinogenic polycyclic aromatic hydrocarbons (PAHs) in grilled chicken. Food Control, 79, 119–125. https://doi.org/10.1016/j.foodcont.2017.03.029

60. Viegas, O., Yebra-Pimentel, I., Martinez-Carballo, E., Simal-Gandara, J., Ferreira, I. M. P. L. V. O. (2014). Effect of beer marinades on formation of polycyclic aromatic hydrocarbons in charcoal-grilled pork. Journal of Agricultural and Food Chemistry, 62(12), 2638–2643. https://doi.org/10.1021/jf404966w

61. Janoszka, B. (2011). HPLC fluorescence analysis of polycyclic aromatic hydrocarbons (PAHs) in pork meat and its gravy fried without additives and in the presence of onion and garlic. Food Chemistry, 126(3), 1344–1353. https://doi.org/10.1016/j.foodchem.2010.11.097

62. Bianchini, F., Vainio, H. (2001). Allium vegetables and organosulfur compounds: do they help prevent cancer? Environmental Health Perspectives, 109(9), 893–902. https://doi.org/10.1289/ehp.01109893


Review

For citations:


Oz E. Mutagenic and/or carcinogenic compounds in meat and meat products: polycyclic aromatic hydrocarbons perspective. Theory and practice of meat processing. 2022;7(4):282-287. https://doi.org/10.21323/2414-438X-2022-7-4-282-287

Views: 662


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)