Preview

Теория и практика переработки мяса

Расширенный поиск

Application of concave induction cooking to improve the texture and flavor of braised pork

  D. Da,   C. Li

https://doi.org/10.21323/2414-438X-2021-6-4-354-367

Аннотация

Long-term cooking may reduce the eating and nutritional quality attributes of meat products due to excessive oxidation. This study aimed to investigate the feasibility of concave induction to improve the quality of braised pork belly. Pork belly cubes were subjected to concave induction cooking (2000 W) or plane induction cooking (2000 W, traditional) for 60 min, 90 min, 120 min or 150 min. Then texture, fatty acid profile, lipid and protein oxidation, volatile flavor and sensory test in braised meat were evaluated. Compared with traditional method, concave induction cooking showed higher heating performance with shorter time to achieve a setting temperature. Compared with traditional cooking for 150 min, concave induction cooking for 60 min did not only produce a comparable volatile flavor and sensory scores, but also give better quality attributes, including lower hardness, chewiness, thrombogenicity values, PUFA/SFA value, lipid and protein oxidation. E‑nose results showed that samples cooked by concave induction for 60 min and 90 min showed a great similarity to those cooked by plane induction for 150 min. Concave induction cooking for 60 min also showed advantages to retain higher abundances of other volatile compounds including 2-pentylfuran, (E, E)-3,5-octadien‑2- one, 2, 3-octanedione, 2-decahydro‑1,6- dimethylnaphthalene when compared with plane induction cooking for 150 min.

Об авторах

D. Da
Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University
Китай


C. Li
Key Laboratory of Meat Processing and Quality Control, MOE; Key Laboratory of Meat Processing, MARA; Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control; College of Food Science and Technology, Nanjing Agricultural University
Китай


Список литературы

1. Lucia, O., Maussion, P., Dede, E. J., Burdio, J. M. (2014). Induction heating technology and its applications: past developments, current technology, and future challenges. IEEE Transactions on Industrial Electronics, 61(5), 2509–2520, Article 6595059. https://doi.org/10.1109/TIE.2013.2281162

2. El-Mashad, H. M., Pan, Z. (2017). Application of induction heating in food processing and cooking. Food Engineering Reviews, 9(2), 82–90. https://doi.org/10.1007/s12393–016–9156–0

3. Martinez-Gomez, J. (2017). Analysis of physicochemical and microbiological measurements of food prepared using different stoves. Carpathian Journal of Food Science and Technology, 9(1), 68–79.

4. Zouambia, Y., Youcef Ettoumi, K., Krea, M., Moulai-Mostefa, N. (2017). A new approach for pectin extraction: Electromagnetic induction heating. Arabian Journal of Chemistry, 10(4), 480–487. https://doi.org/10.1016/j.arabjc.2014.11.011

5. Başaran, A., Yilmaz, T., Çivi, C. (2018). Application of inductive forced heating as a new approach to food industry heat exchangers. Journal of Thermal Analysis and Calorimetry, 134(3), 2265–2274. https://doi.org/10.1007/s10973–018–7250–7

6. Acero, J., Burdio, J., Barragan, L., Navarro, D., Alonso, R., Ramon, J. et al. (2010). Domestic induction appliances. IEEE Industry Applications Magazine, 16(2), 39–47, Article 5411854. https://doi.org/10.1109/MIAS.2009.935495

7. Meng, L., Cheng, K. W. E., Chan, K. W. (2011). Systematic approach to high-power and energy-efficient industrial induction cooker system: circuit design, control strategy, and prototype evaluation. IEEE Transactions on Power Electronics, 26(12), 3754–3765, Article 5986727. https://doi.org/10.1109/TPEL.2011.2165082

8. Chao, N. (1997). Concave induction cooking surface for wok cooking. Patent, US5687642 A. https://doi.org/US5687642 A

9. Dong, X., Fu, H., Chang, S., Zhang, X., Sun, H., He, B. et al. (2017). Textural and biochemical changes of scallop patinopectenyessoensis adductor muscle during low-temperature long-time (LTLT) processing. International Journal of Food Properties, 20, S2495-S2507. https://doi.org/10.1080/10942912.2017.1373123

10. Qi, J., Liu, D. -Y., Zhou, G. -H., Xu, X.-L. (2017). Characteristic flavor of traditional soup made by stewing Chinese yellowfeather chickens. Journal of Food Science, 82(9), 2031–2040. https://doi.org/10.1111/1750–3841.13801

11. Qi, J., Li, X., Zhang, W., Wang, H., Zhou, G., Xu, X. (2018). Influence of stewing time on the texture, ultrastructure and in vitro digestibility of meat from the yellow-feathered chicken breed. Animal Science Journal, 89(2), 474–482. https://doi.org/10.1111/asj.12929

12. Li, Y., Li, C., Li, H., Lin, X., Deng, S., Zhou, G. (2016). Physicochemical and fatty acid characteristics of stewed pork as affected by cooking method and time. International Journal of Food Science and Technology, 51(2), 359–369. https://doi.org/10.1111/ijfs.12968

13. Chen, Y., Zhou, G., Zhu, X., Xu, X., Tang, X., Gao, F. (2007). Effect of low dose gamma irradiation on beef quality and fatty acid composition of beef intramuscular lipid. Meat Science, 75(3), 423–431. https://doi.org/10.1016/j.meatsci.2006.08.014

14. Campo, M., Muela, E., Olleta, J., Moreno, L., Santaliestra- Pasías, A., Mesana, M. et al. (2013). Influence of cooking method on the nutrient composition of Spanish light lamb. Journal of Food Composition and Analysis, 31(2), 185–190. https://doi.org/10.1016/j.jfca.2013.05.010

15. Soladoye, O., Shand, P., Dugan, M., Gariépy, C., Aalhus, J., Estévez, M. et al. (2017). Influence of cooking methods and storage time on lipid and protein oxidation and heterocyclic aromatic amines production in bacon. Food Research International, 99, 660–669. https://doi.org/10.1016/j.foodres.2017.06.029

16. Oliver, C. N., Ahn, B. -W., Moerman, E. J., Goldstein, S., Stadtman, E. R. (1987). Age-related changes in oxidized proteins. Journal of Biological Chemistry, 262(12), 5488–5491.

17. Lund, M. N., Lametsch, R., Hviid, M. S., Jensen, O. N., Skibsted, L. H. (2007). High-oxygen packaging atmosphere influences protein oxidation and tenderness of porcine longissimus dorsi during chill storage. Meat Science, 77(3), 295–303. https://doi.org/10.1016/j.meatsci.2007.03.016

18. Huang, X. -H., Qi, L. -B., Fu, B. -S., Chen, Z. -H., Zhang, Y. -Y., Du, M. et al.. (2019). Flavor formation in different production steps during the processing of cold-smoked Spanish mackerel. Food Chemistry, 286, 241–249. https://doi.org/10.1016/j.foodchem.2019.01.211

19. Xu, Y., Liu, Y., Jiang, C., Zhang, C., Li, X., Zhu, D. et al. (2014). Determination of volatile compounds in turbot (psetta maxima) during refrigerated storage by headspace solid-phase microextraction and gas chromatography-mass spectrometry. Journal of the Science of Food and Agriculture, 94(12), 2464–2471. https://doi.org/10.1002/jsfa.6581

20. Wang, R., Huang, F., Zhang, L., Liu, Q., Zhang, C., Zhang, H. (2019). Changes in the texture, microstructures, colour and volatile compounds of pork meat loins during superheated steam cooking. International Journal of Food Science & Technology, 54(10), 2821–2830. https://doi.org/10.1111/ijfs.14198

21. Meng, L., Cheng, K., Chan, K. (2009). Heating performance improvement and field study of the induction cooker. In 3rd International Conference on Power Electronics Systems and Applications, Article 5228679.

22. Jiang, Q., Han, J., Gao, P., Yu, L., Xu, Y., Xia, W. (2018). Effect of heating temperature and duration on the texture and protein composition of Bighead Carp (Aristichthys nobilis) muscle. International Journal of Food Properties, 21(1), 2110–2120. https://doi.org/10.1080/10942912.2018.1489835

23. He, S., Elfalleh, W., Sun, X., Du, M., Chen, H., Sun, H. et al. (2019). Quality and sensory characteristics of volutharpa ampullaceal perryi (false sbalone) meat during the boiling cooking. Journal of Aquatic Food Product Technology, 28(1), 93–106. https://doi.org/10.1080/10498850.2018.1562502

24. Nagao, K., Yanagita, T. (2010). Medium-chain fatty acids: functional lipids for the prevention and treatment of the metabolic syndrome. Pharmacological Research, 61(3), 208–212. https://doi.org/10.1016/j.phrs.2009.11.007

25. Mashek, D. G., Wu, C. (2015). MUFAs. Advances in Nutrition, 6(3), 276–277. https://doi.org/10.3945/an.114.005926

26. Gerber, N., Scheeder, M., Wenk, C. (2009). The influence of cooking and fat trimming on the actual nutrient intake from meat. Meat Science, 81(1), 148–154. https://doi.org/10.1016/j.meatsci.2008.07.012

27. Kouba, M., Benatmane, F., Blochet, J. E., Mourot, J. (2008). Effect of a linseed diet on lipid oxidation, fatty acid composition of muscle, perirenal fat, and raw and cooked rabbit meat. Meat Science, 80(3), 829–834. https://doi.org/10.1016/j.meatsci.2008.03.029

28. Bi, X., Yeo, P. L. Q., Loo, Y. T., Henry, C. J. (2019). Associations between circulating fatty acid levels and metabolic risk factors. Journal of Nutrition and Intermediary Metabolism, 15, 65–69. https://doi.org/10.1016/j.jnim.2019.02.002

29. Kahleova, H., Barnard, N. D. (2019). Serial measures of circulating biomarkers of dairy fat: something is missing. The American Journal of Clinical Nutrition, 109(1), 219–220. https://doi.org/10.1093/ajcn/nqy277

30. Salcedo-Sandoval, L., Cofrades, S., Ruiz-Capillas Pérez, C., Solas, M. T., Jiménez-Colmenero, F. (2013). Healthier oils stabilized in konjac matrix as fat replacers in n‑3 PUFA enriched frankfurters. Meat Science, 93(3), 757–766. https://doi.org/10.1016/j.meatsci.2012.11.038

31. Ulbricht, T.L.V., Southgate, D.A.T. (1991). Coronary heart disease: seven dietary factors. The Lancet, 338(8773), 985–992. https://doi.org/10.1016/0140–6736(91)91846-M

32. Soriano, A., Cruz, B., Gómez, L., Mariscal, C., García Ruiz, A. (2006). Proteolysis, physicochemical characteristics and free fatty acid composition of dry sausages made with deer (cervus elaphus) or wild boar (sus scrofa) meat: a preliminary study. Food Chemistry, 96(2), 173–184. https://doi.org/10.1016/j.foodchem.2005.02.019

33. Simopoulos, A. P. (2004). Omega‑6/omega‑3 essential fatty acid ratio and chronic diseases. Food Reviews International, 20(1), 77–90. https://doi.org/10.1081/FRI‑120028831

34. Dugan, M. E. R., Vahmani, P., Turner, T. D., Mapiye, C., Juarez, M., Prieto, N.et al. (2015). Pork as a source of omega‑3 (n‑3) fatty acids. Journal of Clinical Medicine, 4(12), 1999–2011. https://doi.org/10.3390/jcm4121956

35. Halagarda, M., Kdzior, W., Pyrzynska, E., Kudeka, W. (2018). Fatty acid compositions of selected Polish pork hams and sausages as influenced by their traditionality. Sustainability (Switzerland), 10(11), Article 3885. https://doi.org/10.3390/su10113885

36. Mottram, D. S. (1998). Flavour formation in meat and meat products: a review. Food Chemistry, 62(4), 415–424. https://doi.org/10.1016/S0308–8146(98)00076–4

37. Yang, Z., Lu, R., Song, H., Zhang, Y., Tang, J., Zhou, N. (2016). Effect of different cooking methods on the formation of aroma components and heterocyclic amines in pork loin. Journal of Food Processing and Preservation, 41(3), Article e12981. https://doi.org/10.1111/jfpp.12981

38. Del Pulgar, J. S., Roldan, M., Ruiz-Carrascal, J. (2013). Volatile compounds profile of sous-vide cooked pork cheeks as affected by cooking conditions (vacuum packaging, temperature and time). Molecules, 18(10), 12538–12547. https://doi.org/10.3390/molecules181012538

39. Chen, W. S., Liu, D. C., Chen, M. T. (2002). The effect of roasting temperature on the formation of volatile compounds in Chinese- style pork jerky. Asian-Australasian Journal of Animal Sciences, 15(3), 427–431. https://doi.org/10.5713/ajas.2002.427

40. Song, S., Fan, L., Xu, X., Xu, R., Jia, Q., Feng, T. (2019). Aroma patterns characterization of braised pork obtained from a novel ingredient by sensory-guided analysis and gas-chromatography-olfactometry. Foods, 8(3), Article 87. https://doi.org/10.3390/foods8030087

41. García-Llatas, G., Lagarda, M. J., Romero, F., Abellán, P., Farré, R. (2007). A headspace solid-phase microextraction method of use in monitoring hexanal and pentane during storage: Application to liquid infant foods and powdered infant formulas. Food Chemistry, 101(3), 1078–1086. https://doi.org/10.1016/j.foodchem.2006.03.007

42. Denk, P., Buettner, A. (2018). Identification and quantification of glue-like off-odors in elastic therapeutic tapes. Analytical and Bioanalytical Chemistry, 410(14), 3395–3404. https://doi.org/10.1007/s00216–018–1046–2

43. Griffith, R., Hammond, E. G. (1989). Generation of Swiss cheese flavor components by the reaction of amino acids with carbonyl compounds. Journal of Dairy Science, 72(3), 604–613. https://doi.org/10.3168/jds.S0022–0302(89)79150–5

44. Ji, S., Gu, S., Wang, X., Wu, N. (2015). Comparison of olfactometrically detected compounds and aroma properties of four different edible parts of Chinese mitten crab. Fisheries Science, 81(6), 1157–1167. https://doi.org/10.1007/s12562–015–0925–0

45. Gu, S. -Q., Wang, X. -C., Tao, N. -P., Wu, N. (2013). Characterization of volatile compounds in different edible parts of steamed Chinese mitten crab (eriocheirsinensis). Food Research International, 54(1), 81–92. https://doi.org/10.1016/j.foodres.2013.05.018

46. Luo, J., Nasiru, M. M., Zhuang, H., Zhou, G., Zhang, J. (2021). Effects of partial NaCl substitution with high-temperature ripening on proteolysis and volatile compounds during process of Chinese dry-cured lamb ham. Food Research International, 140, Article 110001. https://doi.org/10.1016/j.foodres.2020.110001

47. Han, D., Zhang, C. -H., Fauconnier, M. -L., Jia, W., Wang, J. -F., Hu, F. -F. et al. (2021). Characterization and comparison of flavor compounds in stewed pork with different processing methods. LWT, 144, Article 111229. https://doi.org/10.1016/j.lwt.2021.111229

48. Da, D., Nian, Y., Shi, J., Li, Y., Zhao, D., Zhang, G., Li, C. (2021). Characterization of specific volatile components in braised pork with different tastes by SPME-GC/MS and electronic nose. Journal of Food Processing and Preservation, 45(5), Article e15492. https://doi.org/10.1111/jfpp.15492.

49. Xu, Y., Chen, Y.P., Deng, S., Li, C., Xu, X., Zhou, G., Liu, Y. (2020). Application of sensory evaluation, GC-ToF-MS, and E‑nose to discriminate the flavor differences among five distinct parts of the Chinese blanched chicken. Food Research International, 137, Article 109669. http://doi.org/10.1016/j.foodres.2020.109669.


Рецензия

Для цитирования:


 ,   . Теория и практика переработки мяса. 2021;6(4):354-367. https://doi.org/10.21323/2414-438X-2021-6-4-354-367

For citation:


Da D., Li C. Application of concave induction cooking to improve the texture and flavor of braised pork. Theory and practice of meat processing. 2021;6(4):354-367. https://doi.org/10.21323/2414-438X-2021-6-4-354-367

Просмотров: 555


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)