Color measurement of animal source foods
https://doi.org/10.21323/2414-438X-2021-6-4-311-319
Аннотация
Rapid and objective assessment of food color is necessary in quality control. The color evaluation of animal source foods using a computer vision system (CVS) and a traditional colorimeter is examined. With the same measurement conditions, color results deviated between these two approaches. The color returned by the CVS had a close resemblance to the perceived color of the animal source foods, whereas the colorimeter returned not typical colors. The effectiveness of the CVS is confirmed by the study results. Considering these data, it could be concluded that the colorimeter is not representative method for color analysis of animal source foods, therefore, the color read by the CVS seemed to be more similar to the real ones.
Об авторах
B. MilovanovicСербия
I. Djekic
Сербия
V. Tomović
Сербия
D. Vujadinović
Босния и Герцеговина
I. Tomasevic
Сербия
Список литературы
1. Sharma, S., Sheehy, T., Kolonel, L.N. (2013). Contribution of meat to vitamin B12, iron and zinc intakes in five ethnic groups in the USA: implications for developing food-based dietary guidelines. Journal of Human Nutrition and Dietetics, 26(2), 156–168. https://doi.org/10.1111/jhn.12035
2. Mabood, F., Jabeen, F., Ahmed, M., Hussain, J., Al Mashaykhi, S.A.A., Al Rubaiey, Z.M.A., et al. (2017). Development of new NIR‑spectroscopy method combined with multivariate analysis for detection of adulteration in camel milk with goat milk. Food Chemistry, 221, 746–750. https://doi.org/10.1016/j.foodchem.2016.11.109
3. Zaheer, K. (2015). An updated review on chicken eggs: production, consumption, management aspects and nutritional benefits to human health. Food and Nutrition Sciences, 6(13), 1208–1220. https://doi.org/10.4236/fns.2015.613127
4. Dufossé, L., Fernández-López, J., Galaup, P., Pérez-Alvarez, J.A. (2015). Color measurements of muscle-based and dairy foods. Chapter in a book: Handbook of Food Analysis — Two Volume Set (3rd edition). Boca Raton: CRC Press.
5. Zaki, R.S. (2013). The Significance of Color In Food Marketing. Syracuse University Honors Program Capstone Projects, 113.
6. Khliji, S., Van de Ven, R., Lamb, T.A., Lanza, M., Hopkins, D. L. (2010). Relationship between consumer ranking of lamb color and objective measures of color. Meat Science, 85(2), 224–229. https://doi.org/10.1016/j.meatsci.2010.01.002
7. Santos, P.M., Pereira-Filho, E.R., Rodriguez-Saona, L.E. (2013). Rapid detection and quantification of milk adulteration using infrared microspectroscopy and chemometrics analysis. Food Chemistry, 138(1), 19–24. https://doi.org/10.1016/j.foodchem.2012.10.024
8. Lakade, A. J., Sundar, K., Shetty, P. H. (2017). Nanomaterialbased sensor for the detection of milk spoilage. LWT — Food Science and Technology, 75, 702–709. https://doi.org/10.1016/j.lwt.2016.10.031
9. Karlsson, M. A., Langton, M., Innings, F., Malmgren, B., Höjer, A., Wikström, M. et al. (2019). Changes in stability and shelflife of ultra-high temperature treated milk during long term storage at different temperatures. Heliyon, 5(9), Article e02431. https://doi.org/10.1016/j.heliyon.2019.e02431
10. Berkhoff, J., Alvarado-Gilis, C., Keim, J.P., Alcalde, J.A., Vargas- Bello-Pérez, E., Gandarillas, M. (2020). Consumer preferences and sensory characteristics of eggs from family farms. Poultry Science, 99(11), 6239–6246. https://doi.org/10.1016/j.psj.2020.06.064
11. Samiullah, S., Roberts, J.R., Chousalkar, K. (2015). Eggshell color in brown-egg laying hens — a review. Poultry Science, 94(10), 2566–2575. https://doi.org/10.3382/ps/pev202
12. Liu, Y.Q., Davis, C., Schmaelzle, S., Rocheford, T., Cook, M., Tanumihardjo, S. (2012). β-Cryptoxanthin biofortified maize (Zea mays) increases -cryptoxanthin concentration and enhances the color of chicken egg yolk. Poultry Science, 91(2), 432–438. https://doi.org/10.3382/ps.2011–01719
13. Lokaewmanee, K., Yamauchi, K.-E., Komori, T., Saito, K. (2010). Effects on egg yolk color of paprika or paprika combined with marigold flower extracts. Italian Journal of Animal Science, 9(4), 356–359. https://doi.org/10.4081/ijas.2010.e67
14. Berkhoff, J., Alvarado-Gilis, C., Keim, J.P., Alcalde, J.A., Vargas-Bello-Pérez, E., Gandarillas, M. (2020). Consumer preferences and sensory characteristics of eggs from family farms. Poultry Science, 99(11), 6239–6246. https://doi.org/10.1016/j.psj.2020.06.064
15. Preisinger, R. (2018). Innovative layer genetics to handle global challenges in egg production. British Poultry Science, 59(1), 1–6. https://doi.org/10.1080/00071668.2018.1401828
16. Tapp, W.N., Yancey, J.W.S., Apple, J.K. (2011). How is the instrumental color of meat measured? Meat Science, 89(1), 1–5. https://doi.org/10.1016/j.meatsci.2010.11.021
17. Tomasevic, I., Djekic, I., Font-i-Furnols, M., Terjung, N., Lorenzo, J. M. (2021). Recent advances in meat color research. Current Opinion in Food Science, 41, 81–87 https://doi.org/10.1016/j.cofs.2021.02.012
18. Milovanovic, B., Djekic, I., Miocinovic, J., Djordjevic, V., Lorenzo, J.M., Barba, F.J., et al. (2020). What Is the Color of Milk and Dairy Products and How Is It Measured? Foods, 9(11), 1629. https://doi.org/10.3390/foods9111629
19. Milovanovic, B., Tomovic, V., Djekic, I., Solowiej, B. G., Lorenzo, J. M., Barba, F. J., et al. (2021). Color assessment of the eggs using computer vision system and Minolta colorimeter. Journal of Food Measurement and Characterization. https://doi.org/10.1007/s11694–021–01085–4 (unpublished data)
20. Tomašević, I. B. (2021). Computer vision system for color measurements of meat and meat products: A review. Theory and Practice of Meat Processing, 4(4), 4–15. https://doi.org/10.21323/2414–438X‑2018–3–4–4–15
21. Chlebda, D.K., Rogulska, A., Łojewski, T. (2017). Assessment of hyperspectral imaging system for color measurement. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 185, 55–62. https://doi.org/10.1016/j.saa.2017.05.037
22. Goñi, S. M., Salvadori, V.O. (2017). Color measurement: comparison of colorimeter vs. computer vision system. Journal of Food Measurement and Characterization. 11, 538–547. https://doi.org/10.1007/s11694–016–9421–1
23. Grillo, O., Rizzo, V., Saccone, R., Fallico, B., Mazzaglia, A., Venora, G., et al. (2014). Use of image analysis to evaluate the shelf life of bakery products. Food Research International, 62, 514–522. https://doi.org/10.1016/j.foodres.2014.03.034
24. Barbin, D.F., Mastelini, S.M., Barbon Jr, S., Campos, G.F., Barbon, A.P.A., Shimokomaki, M. (2016). Digital image analyses as an alternative tool for chicken quality assessment. Biosystems Engineering, 144, 85–93. https://doi.org/10.1016/j.biosystemseng.2016.01.015
25. Tomasevic, I., Tomovic, V., Ikonic, P., Lorenzo Rodriguez J. M.., Barba, F.J., Djekic, I. et al. (2019). Evaluation of poultry meat colour using computer vision system and colourimeter: Is there a difference? British Food Journal, 121(5), 1078–1087. https://doi.org/10.1108/BFJ‑06–2018–0376
26. Tomasevic, I., Tomovic, V., Barba, F.J., Vasilev, D., Jokanovic, M., Šojić, B. et al. (2018). How the color of game meat should be measured: computer vision system vs. colorimeter. Fleischwirtschaft-Frankfurt, 1, 85–89.
27. Milovanovic, B., Đekić, I., Solowiej, B., Novaković, S., Đorđević, V., Tomašević, I. (2020). Computer Vision System: A better tool for assessing pork and beef color than a standard colorimeter. Meat Technology, 61(2), 153–160. https://doi.org/10.18485/meattech.2020.61.2.5
28. Tomasevic, I., Tomovic, V., Milovanovic, B., Lorenzo, J., Đorđević, V., Karabasil, N. et al. (2019). Comparison of a computer vision system vs. traditional colorimeter for color evaluation of meat products with various physical properties. Meat Science, 148, 5–12. https://doi.org/10.1016/j.meatsci.2018.09.015
29. Milovanovic, B., Tomovic, V., Djekic, I., Miocinovic, J., Solowiej, B.G., Lorenzo, J.M. et al., (2021). Color assessment of milk and milk products using computer vision system and colorimeter. International Dairy Journal, 120, Article 105084. https://doi.org/10.1016/j.idairyj.2021.105084
30. Karunanayaka, D.S., Jayasena, D.D., Jo, C. (2016). Prevalence of pale, soft, and exudative (PSE) condition in chicken meat used for commercial meat processing and its effect on roasted chicken breast. Journal of Animal Science and Technology, 58(1), 1–8. https://doi.org/10.1186/s40781–016–0110–8
31. Feng, X., Moon, S.H., Lee, H.Y., Ahn, D.U. (2017). Effect of irradiation on the parameters thatinfluence quality characteristics of raw turkey breast meat. Radiation Physics and Chemistry, 130, 40–46. https://doi.org/10.1016/j.radphyschem.2016.07.015
32. Geldenhuys, G., Hoffman, L.C., Muller, M. (2014). Sensory profiling of Egyptian goose (Alopochen aegyptiacus) meat. Food Research International, 64, 25–33. https://doi.org/10.1016/j.foodres.2014.06.005
33. Qiao, Y., Huang, J., Chen, Y., Chen, H., Zhao, L., Huang, M. et al. (2017). Meat quality, fatty acid composition and sensory evaluation of Cherry Valley, Spent Layer and Crossbred ducks. Animal Science Journal, 88(1), 156–165. https://doi.org/10.1111/asj.12588
34. Borilova, G., Hulankova, R., Svobodova, I., Jezek, F., Hutarova, Z., Vecerek, V. et al. (2016). The effect of storage conditions on the hygiene and sensory status of wild boar meat. Meat Science, 118, 71–77. https://doi.org/10.1016/j.meatsci.2016.03.024
35. Kudrnáčová, E., Bartoň, L., Bureš, D., Hoffman, L.C. (2018). Carcass and meat characteristics from farm-raisedand wild fallow deer (Dama dama) and red deer (Cervus elaphus): A review. Meat Science, 141, 9–27. https://doi.org/10.1016/j.meatsci.2018.02.020
36. Girolami, A., Napolitano, F., Faraone, D., Braghieri A. (2013). Measurement of meat color using a computer vision system. Meat Science, 93(1), 111–118. https://doi.org/10.1016/j.meatsci.2012.08.010
37. Sun, X., Young, J., Liu, J.H., Bachmeier, L., Somers, R.M., Chen, K.J. et al. (2016). Prediction of pork color attributes using computer vision system. Meat Science, 113, 62–64. https://doi.org/10.1016/j.meatsci.2015.11.009
38. Sun, X., Young, J., Liu, J. H., Chen, Q., Newman, D. (2018). Predicting pork color scores using computer vision and support vector machine technology. Meat and Muscle Biology, 2(1), 296–302. https://doi.org/10.22175/mmb2018.06.0015
39. Trinderup, C.H., Dahl, A.B., Jensen, K., Carstensen, J.M., Conradsen, K. (2015). Comparison of a multispectral vision system and a colorimeter for the assessment of meat color. Meat Science, 102, 1–7. https://doi.org/10.1016/j.meatsci.2014.11.012
40. Valous, N.A., Mendoza, F., Sun, D.-W., Allen, P. (2009). Color calibration of a laboratory computer vision system for quality evaluation of pre-sliced hams. Meat Science, 81(1), 132–141. https://doi.org/10.1016/j.meatsci.2008.07.009
41. Aktypis, A., Christodoulou, E., Manolopoulou, E., Georgala, A., Daferera, D., Polysiou, M. (2018). Fresh ovine cheese supplemented with saffron (Crocus sativus L.): Impact on microbiological, physicochemical, antioxidant, color and sensory characteristics during storage. Small Ruminant Research, 167, 32–38. https://doi.org/10.1016/j.smallrumres.2018.07.016
42. Aday, S., Yuceer, Y.K. (2014). Physicochemical and sensory properties of mihalic cheese. International Journal of Food Properties, 17(10), 2207–2227. https://doi.org/10.1080/10942912.2013.790904
43. Siefarth, C., Tran, T., Mittermaier, P., Pfeiffer, T., Buettner, A. (2014). Effect of radio frequency heating on yoghurt. I. Technological applicability, shelf-life and sensorial quality. Foods, 3(2), 318–335. https://doi.org/10.3390/foods3020318
44. Li, Y., Shabani, K. I., Qin, X., Yang, R., Jin, X., Ma, X. et al. (2019). Effects of crosslinked inulin with different polymerisation degrees on physicochemical and sensory properties of setstyle yoghurt. International Dairy Journal, 94, 46–52. https://doi.org/10.1016/j.idairyj.2019.02.009
45. Gul, O., Atalar, I., Mortas, M., Dervisoglu, M. (2018). Rheological, textural, color and sensorial properties of kefir produced with buffalo milk using kefir grains and starter culture: A comparison with cows’ milk kefir. International Journal of Dairy Technology, 71, 73–80. https://doi.org/10.1111/1471–0307.12503
46. Avila, M., Gomez-Torres, N., Delgado, D., Gaya, P., Garde, S. (2017). Effect of high- pressure treatments on proteolysis, volatile compounds, texture, color, and sensory characteristics of semihard raw Ewe milk cheese. Food Research International, 100, 595–602. https://doi.org/10.1016/j.foodres.2017.07.043
47. Diezhandino, I., Fernández, D., González, L., McSweeney, P. L. H., Fresno, J. M. (2015). Microbiological, physico-chemical and proteolytic changes in a Spanish blue cheese during ripening (Valdeón cheese). Food Chemistry, 168, 134–141. https://doi.org/10.1016/j.foodchem.2014.07.039
48. Dai, S., Jiang, F., Corke, H., Shah, N.P. (2018). Physicochemical and textural properties of mozzarella cheese made with konjac glucomannan as a fat replacer. Food Research International, 107, 691–699. https://doi.org/10.1016/j.foodres.2018.02.069
49. Kędzierska-Matysek, M., Barłowska, J., Wolanciuk, A., Litwińczuk, Z. (2018). Physicochemical, mechanical and sensory properties of long-ripened Polish and Italian cheeses and their content of selected minerals. Journal of Elementology, 23(3), 985–998. https://doi.org/10.5601/jelem.2017.22.4.1452
50. Ramírez-Navas, J. S. (2010). Espectrocolorimetría: Caracterizacion de leche y quesos. Tecnología Lactea Latinoamericana, 61, 52–58.
51. Truong, T., Palmer, M., Bansal, N., Bhandari, B. (2018). Effects of dissolved carbon dioxide in fat phase of cream on manufacturing and physical properties of butter. Journal of Food Engineering, 226, 9–21. https://doi.org/10.1016/j.jfoodeng.2018.01.012
52. Tarlak, F., Ozdemir, M., Melikoglu, M. (2016). Computer vision system approach in color measurements of foods: Part II. Validation of methodology with real foods. Food Science and Technology, 36(3), 499–504. https://doi.org/10.1590/1678–457X.02616
Рецензия
Для цитирования:
, , , , . Теория и практика переработки мяса. 2021;6(4):311-319. https://doi.org/10.21323/2414-438X-2021-6-4-311-319
For citation:
Milovanovic B.R., Djekic I.V., Tomović V.M., Vujadinović D., Tomasevic I.B. Color measurement of animal source foods. Theory and practice of meat processing. 2021;6(4):311-319. https://doi.org/10.21323/2414-438X-2021-6-4-311-319