Biologically active peptides of meat and meat product proteins: a review. Part 1. General information about biologically active peptides of meat and meat products


https://doi.org/10.21323/2414-438X-2019-4-4-12-16

Full Text:


Abstract

Over many years, proteins and polypeptides have aroused scientific-practical interest due to multiple functions in the metabolic processes in the body upon vital activities. Biologically active substances of protein origin have wide application in different industries, including the food industry and medicine. At present, many studies are directed towards investigation of mechanisms of formation of such physiologically valuable food components as biologically active peptides and methods of their recovery from meat raw materials and meat products. A large part of literature data confirms that mechanisms of formation of such peptides are similar irrespective of methods of their generation. Their basis is enzymatic hydrolysis of muscle tissue proteins under the action of intracellular enzymes during autolysis, digestive enzymes of the human gastrointestinal tract or commercial enzyme preparations used in laboratories or in the industry. The method of culinary and/or technological processing also affects the process of biopeptide formation in meat products, namely, their recovery and availability.


About the Authors

I. M. Chernukha
V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences
Russian Federation
Irina M. Chernukha — doctor of technical sciences, professor, corresponding member to the Russian Academy of Sciences, leading research scientist, Experimental clinic-laboratory «Biologically active substances of an animal origin», 109316, Moscow, Talalikhina str., 26. Tel: +7–495–676–63–21


N. G. Mashentseva
Moscow state university of food production
Russian Federation
Natal’ya G. Mashentseva — doctor of technical sciences, professor RAS, head of the Department of Biotechnology and Technology of Products of Bioorganic Synthesis, 125080, Moscow, Volokolamskoe sh., 11. Tel.: +7–499–811–00–03, ext. 6883


D. A. Afanasev
Moscow state university of food production
Russian Federation
Dmitrii A. Afanas’ev — student, Institute of Innovative Technologies and Bioindustry of Food Products, 125080, Moscow, Volokolamskoe sh., 11. Tel.: +7–985–456–77–82


N. L. Vostrikova
V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences
Russian Federation
Natal’ya L. Vostrikova — candidate of technical sciences, head of laboratory «Scientific and methodical work, biological and analytical research», 109316, Moscow, Talalikhina str., 26. Tel.: +7–495–676–79–81


References

1. Sentandreu, M.A., Coulis, G., Ouali, A. (2002). Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends in Food Science and Technology, 13(12), 400–421. DOI: 10.1016/S0924–2244(02)00188–7

2. Toldrá, F., Aristoy, M.-C., Mora, L., Reig, M. (2012). Innovations in value-addition of edible meat by-products. Meat Science, 92(3), 290–296. DOI: 10.1016/j.meatsci.2012.04.004

3. Albenzio, M., Santillo, A., Caroprese, M., Malva, A.D., Marino, R. (2017). Bioactive Peptides in Animal Food Products. Review. Foods. 6(5), 35. DOI: 10.3390/foods6050035

4. Bauchart, C., Rémond, D., Chambon, C., Patureau Mirand, P., Savary-Auzeloux, I., Reynès, C., Morzel, M. (2006). Small peptides (<5 kDa) found in ready-to-eat beef meat. Meat Science, 74(4), 658–666. DOI: 10.1016/j.meatsci.2006.05.016

5. Fu, Y., Young, J.F., Therkildsen, M. (2017). Bioactive peptides in beef: Endogenous generation through postmortem aging. Meat Science, 123, 134–142. DOI: 10.1016/j.meatsci.2016.09.015

6. Zhang, W., Xiao, S., Ahn, D.U. (2013). Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191–1201. DOI: 10.1080/10408398.2011.577540

7. Arihara, K. (2006). Strategies for designing novel functional meat products. Meat Science, 74(1), 219–229. DOI: 10.1016/j.meatsci.2006.04.028

8. Katayama, K., Anggraeni, H.E., Mori, T., Ahhmed, A.M., Kawahara, S., Sugiyama, M., Nakayama, T, Maruyama, M., Muguruma, M. (2008). Porcine skeletal muscle troponin is a good source of peptides with angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 56(2), 355–360. DOI: 10.1021/jf071408j

9. Escudero, E., Sentandreu, M.A., Arihara, K., Toldrá, F. (2010). Angiotensin I‑converting enzyme inhibitory peptides generated from in vitro gastrointestinal digestion of pork meat. Journal of Agricultural and Food Chemistry, 58(5), 2895–2901. DOI: 10.1021/jf904204n

10. Escudero, E., Toldrá, F., Sentandreu, M.A., Nishimura, H., Arihara, K. (2012). Antihypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Science, 91(3), 382–384. DOI: 10.1016/j.meatsci.2012.02.007

11. Saiga, A., Tanabe, S., Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51(12), 3661–3667. DOI: 10.1021/jf021156g

12. Arihara, K., Ohata, M. (2006). Functional Properties of Bioactive Peptides Derived from meat Proteins. In book: Advanced Technologies for Meat Processing, Publisher: CRC Press (Boca Raton). pp. 245–273.

13. Morimatsu, F., Ito, M., Budijanto, S., Watanabe, I., Furukawa, Y., Kimura, S. (1996). Plasma cholesterol-suppressing effect of papain-hydrolyzed pork meat in rats fed hypercholesterolemic diet. Journal of Nutritional Science and Vitaminology, 42(2), 145– 153. DOI: 10.3177/jnsv.42.145

14. Shimizu, M., Sawashita, N., Morimatsu, F., Ichikawa, J., Taguchi, Y., Ijiri, Y., Yamamoto, J. Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thrombosis Research, 123(3), 753–757. DOI: 10.1016/j.thromres.2008.07.005

15. Jang, A., Jo, C., Kang, K.-S., Lee, M. (2008). Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chemistry, 107(1), 327–336. DOI: 10.1016/j.foodchem.2007.08.036

16. Banerjee, P., Shanthi, C. (2012). Isolation of novel bioactive regions from bovine Achilles tendon collagen having angiotensin I-converting enzyme-inhibitory properties. Process Biochemistry, 47(12), 2335–2346. DOI: 10.1016/j.procbio.2012.09.012

17. Fu, Y., Young, J.F., Lokke, M.M., Lametsch, R., Aluko, R. E. Therkildsen, M. (2016). Revalorisation of bovine collagen as a potential precursor of angiotensin I‑converting enzyme (ACE) inhibitory peptides based on in silico and in vitro protein digestions. Journal of Functional Foods, 24, 196–206. DOI: 10.1016/j.jff.2016.03.026

18. Saiga, A., Iwai, K., Hayakawa, T., Takahata, Y., Kitamura, S., Nishimura, T., Morimatsu, F. (2008). Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. Journal of Agricultural and Food Chemistry, 56(20), 9586–9591. DOI: 10.1021/jf072669w

19. Li, B., Chen, F., Wang, X., Ji, B., Wu, Y. (2007). Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization–mass spectrometry. Food Chemistry, 102(4), 1135–1143. DOI: 10.1016/j.foodchem.2006.07.002

20. Escudero, E., Mora, L., Fraser, P.D., Aristoy, M.-C., Toldrá, F. (2013). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2–3), 1282–1288. DOI: 10.1016/j.foodchem.2012.10.133

21. Xing, L.-J., Hu, Y.-Y., Hu, H.-Y., Ge, Q.-F., Zhou, G.-H., Zhang, W.-G. (2016). Purification and identification of antioxidative peptides from dry-cured Xuanwei ham. Food Chemistry, 194, 951–958. DOI: 10.1016/j.foodchem.2015.08.101

22. Broncano, J.M., Otte, J., Petrón, M.J., Parra, V., Timón, M.L. (2012). Isolation and identification of low molecular weight antioxidant compounds from fermented «chorizo» sausages. Meat Science, 90(2), 494–501. DOI: 10.1016/j.meatsci.2011.09.015

23. Fu, Y., Young, J.F., Therkildsen, M. (2017). Bioactive peptides in beef: Endogenous generation through postmortem aging. Meat Science, 123, 134–142. DOI: 10.1016/j.meatsci.2016.09.015

24. Lafarga, T., Hayes, M. (2014). Bioactive peptides from meat muscle and by-products: Generation, functionality and application as functional ingredients. Meat Science, 98(2), 227–239. DOI: 10.1016/j.meatsci.2014.05.036

25. Zhang, W., Xiao, S., Ahn, D.U. (2013). Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191–1201. DOI: 10.1080/10408398.2011.577540

26. Korhonen, H., Pihlanto-Leppälä, A., Rantamäki, P., Tupasela, T. (1998). Impact of processing on bioactive proteins and peptides. Trends in Food Science and Technology, 9(8–9), 307–319. DOI: 10.1016/S0924–2244(98)00054–5

27. Leygonie, C., Britz, T.J., Hoffman, L.C. (2012). Impact of freezing and thawing on the quality of meat: Review. Meat Science, 91(2), 93–98. DOI: 10.1016/j.meatsci.2012.01.013

28. Adje E.; BaAdje, E.Y., Balti, R., Kouach, M., Guillochon, D., Nedjar-Arroume, N. (2011). α 67–106 of bovine hemoglobin: A new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. European Food Research and Technology, 232(4), 637–646. DOI: 10.1007/s00217–011–1430-z

29. Bauchart, C., Morzel, M., Chambon, C., Mirand, P.P., Reynès, C., Buffière, C., Rémond, D. (2007). Peptides reproducibly released by in vivo digestion of beef meat and trout flesh in pigs. British Journal of Nutrition, 98(6), 1187–1195. DOI: 10.1017/S0007114507761810

30. Pihlanto, A., Korhonen, H. (2003). Bioactive peptides and proteins. Advances in Food and Nutrition Research, 47, 175–276. DOI: 10.1016/S1043–4526(03)47004–6

31. Cheung, I.W.Y., Nakayama, S., Hsu, M.N.K., Samaranayaka, A.G.P., Li-Chan, E.C.Y. (2009). Angiotensim-I converting enzyme inhibitory activity of hydrolysates from oat (Avena sativa) proteins by in silico and in vitro analyses. Journal of Agricultural and Food Chemistry, 57(19), 9234–9242. DOI: 10.1021/jf9018245

32. Lafarga, T., O’Connor, P., Hayes, M. (2015). In silico methods to identify meat-derived prolylendopeptidase inhibitors. Food Chemistry, 175, 337–343. DOI: 10.1016/j.foodchem.2014.11.150

33. Vercruysse, L., Van Camp, J., Smagghe, G. (2005). ACE inhibitory peptides derived from enzymatic hydrolysate of animal protein: A review. Journal of Agricultural and Food Chemistry, 53(21), 8106–8115. DOI: 10.1021/jf0508908

34. Lafarga, T., O’Connor, P., Hayes, M. (2014). Identification of novel dipeptidyl peptidase-IV and angiotensin-I-converting enzyme inhibitory peptides from meat proteins using in silico analysis. Peptides, 59, 53–62. DOI: 10.1016/j.peptides.2014.07.005

35. Di Bernardini, R., Mullen, A.M., Bolton, D., Kerry, J., O’Neill, E., Hayes, M. (2012). Assessment of the angiotensin-I-converting enzyme (ACE-I) inhibitory and antioxidant activities of hydrolysates of bovine brisket sarcoplasmic proteins produced by papain and characterisation of associated bioactive peptidic fractions. Meat Science, 90(1), 226–235. DOI: 10.1016/j.meatsci.2011.07.008

36. Database BIOPEP [Electronic resource: http://www.uwm.edu.pl/biochemia/index.php/en/biopep. For access to information resources require authorization. Access date 20.09.2019]

37. Kȩska, P., Stadnik, J. (2016).Porcine myofibrillar proteins as potential precursors of bioactive peptides — an in silico study. Food and Function, 7(6), с. 2878–2885. DOI: 10.1039/c5fo01631b

38. Chernukha, I.M., Mashentseva, N.G., Vostrikova, N.L., Kovalev, L.I., Kovaleva, M.A., Afanasev, D.A., Bazhaev, A.A. (2018). Generation of bioactive peptides in meat raw materials exposed to proteases of different origin. Sel’skokhozyaistvennaya biologiya, 53(6), 1247–1261. DOI: 10.15389/agrobiology.2018.6.1247rus (in Russian)

39. Christensen, L., Ertbjerg, P., Løje, H., Risbo, J., van den Berg, F.W.J., Christensen, M. (2013). Relationship between meat toughness and properties of connective tissue from cows and young bulls heat treated at low temperatures for prolonged times. Meat Science, 93(4), 787–795. DOI: 10.1016/j.meatsci.2012.12.001

40. Yu, T.-Y., Morton, J.D., Clerens, S., Dyer, J.M. (2017). Cooking-induced protein modifications in meat. Comprehensive Reviews in Food Science and Food Safety, 16(1), 141–159. DOI: 10.1111/1541–4337.12243

41. Stadnik, J., Keska, P. (2015). Meat and fermented meat products as a source of bioactive peptides. Acta Scientiarum Polonorum, Technologia Alimentaria, 14(3), 181–190. DOI: 10.17306/J.AFS.2015.3.19

42. Toldra, F. (2004). Dry. In book: Encyclopedia of Meat Sciences. Three-Volume Set Volume 1–3. Edited by Jensen, W.K., Carrick Devine, C., Dikeman, M. New York: Elsevier. pp. 360–365. ISBN: 978–0–12–464970–5

43. Kato, T., Matsuda, T., Tahara, T., Sugimoto, M., Sato, Y., Nakamura, R. (1994). Effects of Meat-conditioning and Lactic Fermentation on Pork Muscle Protein Degradation. Bioscience, Biotechnology, and Biochemistry, 58(2), 408–410. DOI: 10.1271/bbb.58.408

44. Mora, L., Gallego, M., Toldra, F. (2018). ACEI–Inhibitory peptides naturally generated in meat and meat products and their health relevance. Review. Nutrients, 10(9), 1259. DOI: 10.3390/nu10091259

45. Zamaratskaia, G., Li, S. (2017). Proteomics in meat science — current status and future. Theory and Practice of Meat Processing, 2(1), 18–26. DOI: 10.21323/2414–438X-2017–2–1–18–26 (in Russian)

46. Di Luca, A., Elia, G., Mullen, A.M., Hamill, R.M. (2013). Monitoring post mortem changes in porcine muscle through 2-D DIGE proteome analysis of Longissimus muscle exudate. Proteome Science, 11(1), 9. DOI: 10.1186/1477–5956–11–9

47. Chernukha, I.M., Kovalev, L.I., Mashentseva, N.G., Kovaleva, M.A., Vostrikova, N.L. (2019). Detection of protein aggregation markers in raw meat and finished products. Foods and Raw Materials, 7(1), 118–123. DOI: 10.21603/2308–4057–2019–1–118–123

48. Chernukha I. M., Mashentseva N. G., Afanasiev D. A., Laptev G. U., Ilina L. A. (2019). Study of the effect of cholesterol-lowering starter cultures in smoked sausages on the formation of bioactive peptides and lipid profile in triton-induced hyperlipidemic rats. The 60th International Meat Industry Conference MEATCON2019, 333,012049. DOI:10.1088/1755–1315/333/1/012049


Supplementary files

For citation: Chernukha I.M., Mashentseva N.G., Afanasev D.A., Vostrikova N.L. Biologically active peptides of meat and meat product proteins: a review. Part 1. General information about biologically active peptides of meat and meat products. Theory and practice of meat processing. 2019;4(4):12-16. https://doi.org/10.21323/2414-438X-2019-4-4-12-16

Views: 53

Refbacks

  • There are currently no refbacks.


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)