LOW-TEMPERATURE ATMOSPHERIC-PRESSURE PLASMA IN MICROBIAL DECONTAMINATION AND MEAT TECHNOLOGY. A REVIEW


https://doi.org/10.21323/2414-438X-2019-4-1-21-29

Полный текст:


Аннотация

The development of plasma technology is associated with the unique features of non-equilibrium low-temperature plasma: high electron energy and high concentration of chemically active excited and charged particles at low gas temperature, which allows to process thermolabile materials and biological objects in gentle conditions when high temperatures are not required. The biological effects of low-temperature plasma exposure are considered. It was established that during plasma treatment, a combined effect on cells and tissues of living systems from UV radiation, ions and chemically active particles occurs. Depending on the plasma type, the significance of each of the listed mechanisms for increasing the effectiveness of plasma treatment may vary. However, all these mechanisms interact with each other and have a synergistic effect. It was shown that the conducted studies confirm the ability of low-temperature plasma to inactivate pathogenic microorganisms upon contact with biological objects and foods. The results of the studies are presented, the purpose of which was to study the effect of plasma treatment on nitrite concentration in the water treated by this method and to assess the possibility of its use as a source of nitrite when curing meat products.


Об авторе

Natalia А. Gorbunova
V.M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Россия

candidate of technical sciences, Scientific secretary 

109316, Moscow, Talalikhina str., 26 . Tel.: +7 -495-676-93-17



Список литературы

1. Advanced cold plasma technology. NPC «Plasma», 2016. [Electronic resource: http://plasmamed.ru/application/ files/8114/8828/3627/RUS-PRESENTATION-NPC_Plasma_ investors.pdf . Access date: 09.10.2018]. (In Russian)

2. Tikhonov, E.A. (2013). Investigation of the influence of cold plasma treated water on potato planting growth intensity and productivity. Polythematic online scientific journal of Kuban State Agrarian University, 85, 363-373. (In Russian)

3. Ur’eva, A. V., Kovalchuk, A.N. (2014). Introduction to plasma technology and hydrogen energy: a tutorial. Tomsk: Tomsk Polytechnic University. – 90 p. (In Russian)

4. Fridman, G., Friedman, G., Gutsol, A., Shekhter, A.B, Vasilets, V.N., Fridman, A. (2008). Applied Plasma Medicine. Plasma Processes and Polymers, 5(6), 503–533. DOI: 10.1002/ ppap.200700154

5. Avdeev, S.M., Kuznetsova, E.A., Sosnin, E.A. Plasma treatment of atmospheric pressure of contaminated Escherichia coli surfaces. [Electronic resource: http://asf.ural.ru/VNKSF/Uchastniki/ vnksf11/tezis/04/AvdeevSM/AvdeevSM.html. Access date: 09.10.2018]. (In Russian)

6. Smirnov, B.M. (1982). Introduction to plasma physics. М.: Nauka. – 176 p. (In Russian)

7. Yang, L., Chen, J., Gao, J. (2009). Low temperature argon plasma sterilization effect on pseudomonas aeruginosa and its mechanisms. Journal of Electrostatics, 67(4), 646-651. DOI: 10.1016/j.elstat.2009.01.060

8. Yakushin, R.V. (2015). Intensification of the redox potential of processes in aqueous solutions using the electric discharge plasma method. Dissertation for the scientific degree of Candidate of Technical Sciences. М.: RUCT named after D.I. Mendeleev. -163 p. (In Russian)

9. Baldanov, B.B. (2017). Sources of non-equilibrium argon plasma based on low-current high-voltage discharges. Dissertation for the scientific degree of Doctor of Technical Sciences. Tomsk: Tomsk State University of Control Systems and Radioelectronics. -239 p. (In Russian)

10. Misra, N.N., Jo, С. (2017). Applications of cold plasma technology for microbiological safety in meat industry. Trends in Food Science & Technology, 64, 74-86. DOI: 10.1016/j. tifs.2017.04.005

11. Moisan, M., Barbeau, J., Crevier, M.-C., Pelletier, J., Philip, N., Saoudi, B. (2002). Plasma sterilization. Methods and mechanisms. Pure and Applied Chemistry, 74(3), 349-358. DOI: 10.1351/ pac200274030349

12. Moisan, M., Barbeau, J., Moreau, S., Pelletier, J., Tabrizian, M., Yahia, L'H. (2001). Low-temperature sterilization using gas plasmas: a review of the experiments and an analysis of the inactivation mechanisms. International Journal of Pharmaceutics, 226(1-2), 1-21. DOI: 10.1016/S0378-5173(01)00752-9

13. Rahul, R., Stan, O., Rahman, A., Littlefield, E., Hoshimiya, K., Yalin, A.P., Sharma, A., Pruden, A., Moore, C.A., Yu, Z., Collins, G.J. (2005). Optical and RF electrical characteristics of atmospheric pressure open-air hollow slot microplasmas and application to bacterial inactivation. Journal of Physics D: Applied Physics, 38(11), 1750-1759. DOI:10.1088/0022-3727/38/11/016

14. Opretzka, J., Benedikt, J., Awakowicz, P., Wunderlich, J., von Keudell, A. (2007). The role of chemical sputtering during plasma sterilization of Bacillus atrophaeus. Journal of Physics D: Applied Physics, 40(9), 2826-2830. DOI:10.1088/0022-3727/40/9/024

15. Ivanova, I.P., Trofimova, S.V., Piskarev, I.M., Knyazev, D.I., Timush, A.V., Burkhina, O.E., Litvinova, L.G. (2011). The effect of active forms of oxygen of low-temperature gas-discharge plasma on the resistance of cell membranes. Vestnik of Lobachevsky University of Nizhni Novgorod, 2-2, 190−195. (In Russian)

16. Christofi, N., Anpilov, A.M., Barkhudarov, E.M., Kop'ev, V.A., Kossyi, I.A., Taktakishvili, M.I., Zadiraka, Y. (2002). Pulsed high voltage electric discharge disinfection of microbially contaminated liquids. Letters in applied microbiology, 35(1), 90−94. DOI: 10.1046/j.1472-765X.2002.01139.x

17. Laroussi, M., Mendis, D.A., Rosenberg, M. (2003). Plasma interaction with microbes. New Journal of Physics, 5(4), 41.1- 41.10. DOI: 10.1088/1367-2630/5/1/341

18. Mendis, D.A., Rosenberg, M., Azam, F. (2000). A note of possible electrostatic disruption of bacteria. IEEE Transactions on Plasma Science, 28(4), 1304-1306. DOI: 10.1109/27.893321

19. Boudam, M.K., Moisan, M., Saoudi, B., Popovici, C., Gherardi, N., Massines, F. (2006). Bacterial spore inactivation by atmospheric pressure plasmas in the presence or absence of UV photons as obtained with the same gas mixture. Journal of Physics D: Applied Physics, 39(16), S07, 3494-3507. DOI: 10.1088/0022- 3727/39/16/S07

20. Weltmann, K.-D., von Woedtke Th. (2011). Basic requirements for plasma sources in medicine. EPJ Applied Physics, 55(1), ap100452. DOI: 10.1051/epjap/2011100452

21. Kobzev E.N., Kireev G.V., Rakitskii Y.A., Martovetskaya I.I., Chugunov V.A., Kholodenko V.P., Khramov M.V., Akishev Y.S., Trushkin N.I., Grushin M.E. (2013). Effect of cold plasma on the E. coli cell wall and plasma membrane. Applied Biochemistry and Microbiology, 49, 2, 144-149.

22. Becker, K., Koutsospyros, A., Yin, S.M., Christodoulatos, C., Abramzon, N., Joaquin, J.C., Brelles-Marĩo, G.(2005). Environmental and biological applications of microplasmas. Plasma Physics and Controlled Fusion, 47(12B), B513-B523. DOI: 10.1088/0741- 3335/47/12B/S37

23. Laroussi, M., Leipold, F. (2004). Evaluation of the roles of reactive species, heat, and UV radiation in the inactivation of bacterial cells by air plasmas at atmospheric pressure. International Journal of Mass Spectrometry, 233(1-3), 81-86. DOI: 10.1016/j. ijms.2003.11.016

24. Siemens, W. Uber die elecktrostatische induction und die verzogerung des stroms in flaschendraten. Poggendorfs Ann. Phys. Chem. – 1857. – V. 12, 66-122.

25. Abou-Ghazala, A., Katsuki, S., Schoenbach, K.H., Dobbs, F.C., Moreira, K.R. (2002). Bacterial decontamination of water by means of pulsed corona discharges. IEEE Transactions on Plasma Science, 30(4), 1449-1453. DOI: 10.1109/TPS.2002.804193

26. Laroussi, M. (1996). Sterilization of contaminated matter with atmospheric pressure plasma. IEEE Transactions on Plasma Science, 24(3), 1188-1191. DOI: 10.1109/27.533129

27. Birmingham, J.G., Hammerstrom, D.J. (2000). Bacterial decontamination using ambient pressure nonthermal discharges. IEEE Transactions on Plasma Science, 28(1), 51-55. DOI: 10.1109/27.842862

28. Kayes, M.M., Golden, D.A., Hulbert, G., Roth, J.R., Morrison, J., Montie, T.C., Kelly-Wintenberg, K. (2000). Killing of pathogenic food-borne bacteria exposed to a one atmosphere uniform glow discharge plasma (OAUGDP). Proceedings of 27th IEEE International conference of plasma sciences (Cat. No.00CH37087), P. 251.

29. Sun, Y., Qiu, Y., Nie, A., Wang, X. (2007). Experimental research on inactivation of bacteria using dielectric barrier discharge. IEEE Transactions on Plasma Science, 35(5), 1496-1500. DOI: 10.1109/ TPS.2007.905947

30. Bray, B.J.J., Brelles-Marino, J.C., Abramzon, N. (1999). Destruction of bacterial communities using gas discharge plasma. Proceedings of 26th IEEE International conference of plasma sciences (Cat. No.99CH36297), P. 154.

31. Vleugels, M., Shama, G., Deng, X.T., Greenacre, E., Brocklehurst, T., Kong, M.G. (2005). Atmospheric plasma inactivation of biofilm forming bacteria for food safety control. IEEE Transactions on Plasma Science, 33(2), 824-828.

32. Azharonok, V.V., Kratko, L.E., Filatova, I.I., Melnikova, L.A., Dudchik N.V., Yanetskaya S.A. (2008). Inactivation of microorganisms in the plasma of high-frequency capacitive and low-pressure barrier discharges. V International Symposium on Theoretical and Applied Plasma Chemistry, 2, 414-417. (In Russian)

33. Laroussi, M., Tendero, C., Lu, X., Alla, S., Hynes, W.L. (2006). Inactivation of bacteria by the plasma pencil. Plasma process and Polimers, 3(6-7), 470-473. DOI: 10.1002/ppap.200600005

34. Dudchik, N.V., Emeliyanova, O.A., Kazak, A.V., Kirillov, A.A., Simonchik, L.V. (2017). Estimation of biological effect of air plasma jet in model experiment. Health and environment, 27, 20-23. (In Russian)

35. Gomboeva, S.V., Badmaeva, I.I., Baldanov, B.B., Ranzhurov, Ts.V. (2016). Use of low temperature plasma in the food industry. Materials of the I International Scientific and Technical Conference (extramural), 69-72. (In Russian)

36. Fröhling, A., Durek, J., Schnabel, U., Ehlbeck, J., Bolling, J., Schlüter, O. (2012). Indirect plasma treatment of fresh pork: Decontamination efficiency and effects on quality attributes. Innovative Food Science and Emerging Technologies, 16, 381–390. DOI: 10.1016/j.ifset.2012.09.001

37. Lee, H.J., Jung, H., Choe, W., Ham, J.S., Lee, J.H., Jo, C. (2011). Inactivation of Listeria monocytogenes on agar and processed meat surfaces by atmospheric pressure plasma jets. Food microbiology, 28(8), 1468-1471. DOI: 10.1016/j.fm.2011.08.002

38. Song, H.P., Kim, B., Choe, J.H., Jung, S., Moon, S. Y., Choe, W., Jo, C. (2009). Evaluation of atmospheric pressure plasma to improve the safety of sliced cheese and ham inoculated by 3-strain cocktail Listeria monocytogenes. Food Microbiology, 26(4), 432– 436. DOI: 10.1016/j.fm.2009.02.010

39. Lee, J., Jo, K., Lim, Y., C. Jo, Choe, J., Jung, S. (2017). Quality properties of ground ham cured by atmospheric pressure plasma treatment. Proceedings of the 63th International Congress of Meat Science and Technology, Cork, Ireland, 574.

40. Hae, I.Y., Hyun-Joo, K., Jun, H.Ch., Hee-Jun, J., Samooel, J., Sanghoo, P., Wonho, C., Cheorun, J. (2015). The use of plazmatreated water as source of nitrite for curing ham. Proceedings of the 61th International Congress of Meat Science and Technology, France, 7.26.

41. Samooel, J., Hyun, J. K., Sanghoo, P., Hae In. Y., Wonho, C., Cheorun, Jo (2015). The addition of nitrite to processed meat by plazma-treated water. Proceedings of the 61th International Congress of Meat Science and Technology, France, 7.25.

42. Jung, S., Kim, H.J., Park, S., In Yong, H., Choe, W., Jo, C. (2015). The use of atmospheric pressure plasma-treated water as a source of nitrite for emulsion-type sausage. Meat Science, 108, 132–137. DOI: 10.1016/j.meatsci.2015.06.009

43. Oehmigen, K., Hahnel, M., Brandenburg, R., Wilke, C., Weltmann, K.D., von Woedtke, T. (2010). The role of acidification for antimicrobial activity of atmospheric pressure plasma in liquids. Plasma Processes and Polymers, 7(3-4), 250–257. DOI: 10.1002/ ppap.200900077

44. Oehmigen, K., Winter, J., Hahnel, M., Wilke, C., Brandenburg, R., Weltmann, K. D., von Woedtke, T. (2011). Estimation of possible mechanisms of Escherichia coli inactivation by plasma treated sodium chloride solution. Plasma Processes and Polymers, 8(10), 904-913. DOI: 10.1002/ppap.201000099

45. Jung, S., Lee, J., Lim, Y., Choe, W., Yong, H.I., Jo, C. (2017). Direct infusion of nitrite into meat batter by atmospheric pressure plasma treatment. Innovative Food Science and Emerging Technologies, 39, 113–118. DOI: 10.1016/j.ifset.2016.11.010

46. Kim H.J., Yong H.I., Park S., Kim K., Kim T.H., Choe W., Jo C. (2014). Effect of atmospheric pressure dielectric barrier discharge plasma on the biological activity of naringin. Food Chemistry, 160, 241-245. DOI: 10.1016/j.foodchem.2014.03.101

47. Jung, S., Jo, K., Lee, J., Yong, H.I., Yum, S.J., Jeong, H.G., Jo, C. (2017). Development of natural nitrite source by atmospheric pressure plasma. Proceedings of the 63th International Congress of Meat Science and Technology, Cork, Ireland, 562.

48. Benecke, P., Ahlfeld, B., Boulaaba, A., Zimmermann, J.L., Klein, G. (2016). Effect of atmospheric cold plasma (ACP) on Escherichia coli, Listeria monocytogenes and Salmonella enterica serovar Typhimurium on ready-to-eat mortadella-type sausage. Proceedings of the 62th International Congress of Meat Science and Technology, Bangkok, Thailand, № 06-09.

49. Wang, J., Zhuang, H., Hinton, A., Zhang, J. (2016). Influence of in-package cold plasma treatment on microbiological shelf life and appearance of fresh chicken breast fillets. Food Microbiology, 60, 142-146. DOI: 10.1016/j.fm.2016.07.007

50. Mingming, Huang, Jiamei Wang, Wenjing Yan, Weiwei Qiao, Jianhao Zhang (2016). Effect of dielectric barrier plasma on bacteria and surface color of pork loin. Proceedings of the 62th International Congress of Meat Science and Technology, Bangkok, Thailand, № P 09-25.

51. Attri, P., Sarinont, T., Kim, M., Amano, T., Koga, K., Cho, A. E., Choi, E. H., Shiratani M. (2015). Influence of ionic liquid and ionic salt on protein against the reactive species generated using dielectric barrier discharge plasma. Scientific Reports, 5, 17781. DOI: 10.1038/srep17781

52. Kim, J.-S., Lee, E.-J., Choi, E.H., Kim, Y.-J. (2014). Inactivation of Staphylococcus aureus on the beef jerky by radio-frequency atmospheric pressure plasma discharge treatment. Innovative Food Science and Emerging Technologies, 22, 124–130. DOI: 10.1016/j.ifset.2013.12.012

53. Kasyanov, D.G., Zaporogskiy, A.A. (2013). The use of cold argon plasma to sterilize canned meat and fish products. Collection of materials of the International Scientific and Technical Internet Conference, Krasnodar, 12-14. (In Russian)


Дополнительные файлы

Для цитирования: Gorbunova N.А. LOW-TEMPERATURE ATMOSPHERIC-PRESSURE PLASMA IN MICROBIAL DECONTAMINATION AND MEAT TECHNOLOGY. A REVIEW. Теория и практика переработки мяса. 2019;4(1):21-29. https://doi.org/10.21323/2414-438X-2019-4-1-21-29

For citation: Gorbunova N.A. LOW-TEMPERATURE ATMOSPHERIC-PRESSURE PLASMA IN MICROBIAL DECONTAMINATION AND MEAT TECHNOLOGY. A REVIEW. Theory and practice of meat processing. 2019;4(1):21-29. https://doi.org/10.21323/2414-438X-2019-4-1-21-29

Просмотров: 24

Обратные ссылки

  • Обратные ссылки не определены.


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)