Preview

Theory and practice of meat processing

Advanced search

Effect of essential oils in meat.

https://doi.org/10.21323/2414-438X-2025-10-4-351-365

Abstract

Consumer demand for safer and healthier food products has driven the meat industry to seek natural alternatives to synthetic preservatives. Essential oils (EOs), volatile compounds derived from plants, have emerged as promising natural preservatives due to their strong antimicrobial and antioxidant activities. This review provides a comprehensive analysis of the effectiveness of EOs in extending the shelf life of meat and meat-based products. It discusses the composition and major bioactive compounds such as terpenes, terpenoids, and phenylpropanoids, which play key roles in preservation. Moreover, critical factors influencing EO effectiveness, including concentration, interactions with food matrices, and application methods, such as direct incorporation, vapor  phase diffusion, and encapsulation technologies, are thoroughly examined. The mechanisms of EO action, including disruption of microbial cell membranes, generation of reactive oxygen species (ROS), enzyme inhibition, and DNA damage, are described in detail. The antioxidant activity of EOs is also discussed, including their ability to scavenge free radicals, chelate metals, and deactivate singlet oxygen. This review emphasizes the potential of EOs as natural preservatives that support food safety and quality in line with consumer preferences for clean-label products with minimal synthetic additives.

About the Authors

U. Afidah
Diponegoro University
Indonesia

Ulil Afidah, Master Degree, S. Pt., M. Sc, Lecturer, Faculty of Animal and Agricultural Sciences



R. Wardhani
Chungnam National University
Korea, Republic of

Riuh Wardhani, Master Degree, S. Si., M. Si, Doctoral Student, Department of Animal and Dairy Science, College of Agriculture and Life Sciences



A. Putri
Diponegoro University
Indonesia

Amaliya Putri, Student and Researcher, Faculty of Animal and Agricultural Sciences



References

1. Cocking, C., Walton, J., Kehoe, L., Cashman, K. D., Flynn, A. (2020). The role of meat in the European diet: Current state of knowledge on dietary recommendations, intakes and contribution to energy and nutrient intakes and status. Nutrition Research Reviews, 33(2), 181–189. https://doi.org/10.1017/S0954422419000295

2. Heinz, G., Hautzinger, P. (2007). Meat processing technology for small to medium scale procedures. FAO, 2007.

3. Pal, M., Devrani, M. (2018). Application of various techniques for meat preservation. Journal of Experimental Food Chemistry, 4(1), Article 1000134.

4. Kumar, Y., Yadav, D. N., Ahmad, T., Narsaiah, K. (2015). Recent trends in the use of natural antioxidants for meat and meat products. Comprehensive Reviews in Food Science and Food Safety, 14(6), 796–812. https://doi.org/10.1111/1541-4337.12156

5. Oswell, N. J., Thippareddi, H., Pegg, R. B. (2018). Practical use of natural antioxidants in meat products in the U.S.: A re view. Meat Science, 145, 469–479. https://doi.org/10.1016/j.meatsci.2018.07.020

6. Archer, D. (2002). Evidence that ingested nitrate and nitrite are beneficial to health. Journal of Food Protection, 65, 872– 875. https://doi.org/10.4315/0362-028x-65.5.872

7. Flores, M., Toldrá, F. (2021). Chemistry, safety, and regulatory considerations in the use of nitrite and nitrate from natural origin in meat products — Invited review. Meat Science, 171, Article 108272. https://doi.org/10.1016/j.meatsci.2020.108272

8. Dawidowicz, A. L., Olszowy, M., Jóźwik-Dolęba, M. (2014). Importance of solvent association in the estimation of antioxidant properties of phenolic compounds by DPPH method. Journal of Food Science and Technology, 52(7), 4523–4529. https://doi.org/10.1007/s13197-014-1451-2

9. Al Afifah, L., Junianto. (2024). On the use of natural ingredients as preservatives in the fishery products: A philosophical investigation. Jurnal Perikanan Indonesia, 8(1), 57–68. https://doi.org/10.21111/dnj.v8i1.1083 (In Indonesian)

10. Al-Tameemi, Z. A. H. (2025). A review of side effects of ar tificial preservatives on the human health. Al-Kitab Journal for Pure Sciences, 9(1), 68–90. https://doi.org/10.32441/kjps.09.01.p5

11. Costa, D. C., Costa, H. S., Albuquerque, T. G., Ramos, F., Castilho, M. C., Sanches-Silva, A. (2015). Advances in phenolic compounds analysis of aromatic plants and their potential applications. Trends in Food Science and Technology, 45(2), 336–354. https://doi.org/10.1016/j.tifs.2015.06.009

12. Astani, A., Reichling, J., Schnitzler, P. (2010). Comparative study on the antiviral activity of selected monoterpenes de rived from essential oils. Phytotherapy Research, 24(5), 673– 679. https://doi.org/10.1002/ptr.2955

13. Ibrahim, H. M., Hassan, M. A., Amin, R. A., Shawqy, N. A., Elkoly, R. L. (2018). Effect of some essential oils on the bacteriological quality of some chicken meat products. Benha Veterinary Medical Journal, 35(1), 42–49. https://doi.org/10.21608/bvmj.2018.37965

14. Souza, E. L., Stamford, T. L. M., Lima, E. O., Trajano, V. N. (2007). Effectiveness of Origanum vulgare L. essential oil to inhibit the growth of food spoiling yeasts. Food Control, 18(5), 409–413. https://doi.org/10.1016/j.foodcont.2005.11.008

15. Kędzia, A. (2011). The activity of cinnamon oil (Oleum cinnamoni) against anaerobic bacteria. Postępy Fitoterapii, 1, 3–8. (In Polish)

16. Kirkpinar, F., Ünlü, H. B., Serdaroğlu, M., Turp, G. Y. (2014). Effects of dietary oregano and garlic essential oils on carcass characteristics, meat composition, colour, pH and sensory quality of broiler meat. British Poultry Science, 55(2), 157–166. https://doi.org/10.1080/00071668.2013.879980

17. Kozłowska-Lewecka, M., Wesołowski, W., Borowiecka, J. (2011). Analysis of contents of essential oils in white and black pepper determined by GC/MS. Bromatologia i Chemia Toksykologiczna, XLIV(4), 1111–1117. (In Polish)

18. Hüsnü, K., Başer, C., Demirci, F. (2007). Chemistry of Essen tial Oils. Chapter in a book: Flavours and Fragrances. Spring er Berlin Heidelberg, 2007. https://doi.org/10.1007/978-3-540-49339-6_4

19. Baptista-Silva, S., Borges, S., Ramos, O. L., Pintado, M., Sarmento, B. (2020). The progress of essential oils as potential therapeutic agents: A review. Journal of Essential Oil Research, 32(4), 279–295. https://doi.org/10.1080/10412905.2020.1746698

20. Zuzarte, M., Salgueiro, L. (2015). Essential Oils Chemistry. Chapter in a book: Bioactive Essential Oils and Cancer, Springer, Cham, 2015. https://doi.org/10.1007/978-3-319-19144-7_2

21. Żukowska, G., Durczyńska, Z. (2024). Properties and applications of essential oils: A review. Journal of Ecological Engineer ing, 25(2), 333–340. https://doi.org/10.12911/22998993/177404

22. Rehman, R., Asif Hanif, M. (2016). Biosynthetic factories of essential oils: The aromatic plants. Natural Products Chemistry and Research, 04(04), Article 1000227. https://doi.org/10.4172/2329-6836.1000227

23. Masyita, A., Mustika Sari, R., Dwi Astuti, A., Yasir, B., Rahma Rumata, N., Emran, T. B. et al. (2022). Terpenes and terpenoids as main bioactive compounds of essential oils, their roles in human health and potential application as natural food preservatives. Food Chemistry: X, 13, Article 100217. https://doi.org/10.1016/j.fochx.2022.100217

24. Santana de Oliveira, M., Vostinaru, O., Rigano, D., de Aguiar Andrade, E. H. (2023). Editorial: Bioactive compounds present in essential oils: Advances and pharmacological applications. Frontiers in Pharmacology, 14, Article 1130097. https://doi.org/10.3389/fphar.2023.1130097

25. Carvalho, A. A., Andrade, L. N., De Sousa, É. B. V., De Sousa, D. P. (2015). Antitumor phenylpropanoids found in essential oils. BioMed Research International, 2015, 1–21. https://doi.org/10.1155/2015/392674

26. Verrillo, M., Cozzolino, V., Spaccini, R., Piccolo, A. (2021). Humic substances from green compost increase bioactivity and antibacterial properties of essential oils in Basil leaves.Chemical and Biological Technologies in Agriculture, 8(1), Article 28. https://doi.org/10.1186/s40538-021-00226-7

27. Gago, C., Serralheiro, A., Miguel, M. da G. (2025). Anti-in flammatory activity of thymol and thymol-rich essential oils: Mechanisms, applications, and recent findings. Mol ecules, 30(11), Article 2450. https://doi.org/10.3390/molecules30112450

28. Huynh, H. D., Nargotra, P., Wang, H. M. D., Shieh, C. J., Liu, Y. C., Kuo, C. H. (2025). Bioactive compounds from guava leaves (Psidium guajava L.): Characterization, biological activity, synergistic effects, and technological applications. Molecules, 30(6), Article 1278. https://doi.org/10.3390/molecules30061278

29. Walia, A., Kumar, N., Singh, R., Kumar, H., Kumar, V., Kaushik, R. et al. (2022). Bioactive compounds in ficus fruits, their bioactivities, and associated health benefits: A review. Journal of Food Quality, 2022, Article 6597092. https://doi.org/10.1155/2022/6597092

30. Li, J., Li, Z., Duan, Y., Liu, C., Yan, M. (2024). Secondary metabolites of Fomitopsis betulina: Chemical structures, biological activity and application prospects. Journal of Fungi, 10(9), Article 616. https://doi.org/10.3390/jof10090616

31. Hu, Y., Chen, J., Hu, G., Yu, J., Zhu, X., Lin, Y. et al. (2015). Statistical research on the bioactivity of new marine natural products discovered during the 28 years from 1985 to 2012. Marine Drugs, 13(1), 202–221. https://doi.org/10.3390/md13010202

32. Leto, L., Favari, C., Agosti, A., Del Vecchio, L., Di Fazio, A., Bresciani, L. et al. (2024). Evaluation of in vitro-derived hop plantlets, cv. columbus and magnum, as potential source of bioactive compounds. Antioxidants, 13(8), Article 909. https://doi.org/10.3390/antiox13080909

33. Khan, S., Abdo, A. A. A., Shu, Y., Zhang, Z., Liang, T. (2023). The extraction and impact of essential oils on bioactive films and food preservation, with emphasis on antioxidant and antibacterial activities — A review. Foods, 12(22), Article 4169. https://doi.org/10.3390/foods12224169

34. Tongnuanchan, P., Benjakul, S. (2014). Essential oils: Ex traction, bioactivities, and their uses for food preservation. Journal of Food Science, 79(7), R1231-R1249. https://doi.org/10.1111/1750-3841.12492

35. Lopes, A. I., Melo, A., Afonso, T. B., Silva, S., Barros, L., Tavaria, F. K. et al. (2025). Alginate edible films containing essential oils: Characterization and bioactive potential. Polymers, 17(9), Article 1188. https://doi.org/10.3390/polym17091188

36. Perricone, M., Arace, E., Corbo, M. R., Sinigaglia, M., Bevilacqua, A. (2015). Bioactivity of essential oils: A review on their interaction with food components. Frontiers in Microbiology, 6, Article 76. https://doi.org/10.3389/fmicb.2015.00076

37. Posgay, M., Greff, B., Kapcsándi, V., Lakatos, E. (2022). Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products: A review. Heliyon, 8(10), Article e10812. https://doi.org/10.1016/j.heliyon.2022.e10812

38. Wang, W., Li, T., Chen, J., Ye, Y. (2023). Inhibition of salmonella enteritidis by essential oil components and the effect of storage on the quality of chicken. Foods, 12(13), Article 2560. https://doi.org/10.3390/foods12132560

39. Yu, H. H., Chin, Y.-W., Paik, H.-D. (2021). Application of natural preservatives for meat and meat products against food‐ borne pathogens and spoilage bacteria: A review. Foods, 10(10), Article 2418. https://doi.org/10.3390/foods10102418

40. Marquez, R., Aguado, R. J., Barrios, N., Arellano, H., Tolosa, L., Delgado-Aguilar, M. (2025). Advanced antimicrobial surfaces in cellulose-based food packaging. Advances in Col loid and Interface Science, 341, Article 103472. https://doi.org/10.1016/j.cis.2025.103472

41. Smaoui, S., Ben Hlima, H., Tavares, L., Ennouri, K., Ben Braiek, O., Mellouli, L. et al. (2022). Application of essential oils in meat packaging: A systemic review of recent literature. Food Control, 132, Article 108566. https://doi.org/10.1016/j.foodcont.2021.108566

42. Rahim, M. A., Zahran, H. A., Jaffar, H. M., Ambreen, S., Ramadan, M. F., Al-Asmari, F. et al. (2025). Liposomal encapsulation in food systems: A review of formulation, processing, and applications. Food Science and Nutrition,13(8), Article e70587. https://doi.org/10.1002/fsn3.70587

43. Silva, M. P., Fabi, J. P. (2022). Food biopolymers-derived nano gels for encapsulation and delivery of biologically active com pounds: A perspective review. Food Hydrocolloids for Health, 2(12), Article 100079. https://doi.org/10.1016/j.fhfh.2022.100079

44. Yuan, X., Li, Y., Mo, Q., Zhang, B., Shu, D., Sun, L. et al. (2022). A combined approach using slightly acidic electrolyzed water spraying and chitosan and pectin coating on the quality of the egg cuticle, prevention of bacterial inva sion, and extension of shelf life of eggs during storage. Food Chemistry, 389, Article 133129. https://doi.org/10.1016/j.foodchem.2022.133129

45. Katopodi, A., Detsi, A. (2021). Solid Lipid Nanoparticles and Nanostructured Lipid Carriers of natural products as promising systems for their bioactivity enhancement: The case of essential oils and flavonoids. Colloids and Surfaces A: Phys icochemical and Engineering Aspects, 630, Article 127529. https://doi.org/10.1016/j.colsurfa.2021.127529

46. da Silva, B. D., Bernardes, P. C., Pinheiro, P. F., Fantuzzi, E., Roberto, C. D. (2021). Chemical composition, extraction sources and action mechanisms of essential oils: Natural preservative and limitations of use in meat products. Meat Science, 176, Article 108463. https://doi.org/10.1016/j.meatsci.2021.108463

47. Kaur, M., Sharma, S., Kalia, A., Sandhu, N. (2024). Essential oils and their blends: Mechanism of antibacterial activity and antibiofilm potential on food-grade maize starch packaging films. International Microbiology, 27, 1707–1724. https://doi.org/10.1007/s10123-024-00514-w

48. Sánchez-González, L., Vargas, M., González-Martínez, C., Chiralt, A., Cháfer, M. (2011). Use of essential oils in bioactive edible coatings: A review. Food Engineering Reviews, 3, 1–16. https://doi.org/10.1007/s12393-010-9031-3

49. Rong, P. -X., He, X. -Q., Wang, J. -Q., Gan, R. -Y. (2022). Research progress on functional properties of plant essential oils and their applications in fresh keeping of fruits and vegetables. Food and Machinery, 38(5), 226–223. https://doi.org/10.13652/j.spjx.1003.5788.2022.90083 (In Chinese)

50. Himani, Mahawer, S. K., Arya, S., Kumar, R., Prakash, O. (2022). Essential oil: Source of antioxidants and role in food preservation. Chapter in a book: Essential Oils. Springer International Publishing, 2022. https://doi.org/10.1007/978-3-030-99476-1_8

51. Cardoso-Ugarte, G. A., Sosa-Morales, M. E. (2022). Essential oils from herbs and spices as natural antioxidants: Diversity of promising food applications in the past decade. Food Re view Indonesia, 38(sup1), 403–433. https://doi.org/10.1080/87559129.2021.1872084

52. Choe, E., Min, D. B. (2006). Chemistry and reactions of re active oxygen species in foods. Journal of Food Science, 70(9), R142-R159. https://doi.org/10.1111/j.1365-2621.2005.tb08329.x

53. Choe, E., Min, D. B. (2006). Mechanisms and factors for edible oil oxidation. Comprehensive Reviews in Food Science and Food Safety, 5(4), 169–186. https://doi.org/10.1111/j.1541-4337.2006.00009.x

54. Hwang, I.-G., Woo, K.-S., Kim, D.-J., Hong, J.-T., Hwang, B.-Y., Lee, Y.-R. et al. (2007). Isolation and identification of an antioxidant substance from heated garlic (Allium sativum L.). Food Science and Biotechnology, 16(6), 963–966.

55. Cao, W., Chen, W., Sun, S., Guo, P., Song, J., Tian, C. (2007). Investigating the antioxidant mechanism of violacein by density functional theory method. Journal of Molecular Structure: THEOCHEM, 817(1–3), 1–4. https://doi.org/10.1016/J.THEOCHEM.2007.04.022

56. Geng, L., Liu, K., Zhang, H. (2023). Lipid oxidation in foods and its implications on proteins. Frontiers in Nutrition, 10, Article 1192199. https://doi.org/10.3389/fnut.2023.1192199

57. Graf, E., Eaton, J. W. (1990). Antioxidant functions of phytic acid. Free Radical Biology and Medicine, 8(1), 61–69. https://doi.org/10.1016/0891-5849(90)90146-a

58. Decker, E. A., Ivanov, V., Zhu, B. Z., Frei, B. (2001). Inhibition of low-density lipoprotein oxidation by carnosine and histidine. Journal of Agricultural and Food Chemistry, 49(1), 511– 516. https://doi.org/10.1021/jf0010533

59. Bradley, D. G., Min, D. B. (1992). Singlet oxygen oxidation of foods. Critical Reviews in Food Science and Nutrition, 31(3), 211–236. https://doi.org/10.1080/10408399209527570

60. Wang, Y., Lin, Y., He, S., Wu, S., Yang, C. (2024). Singlet oxygen: Properties, generation, detection, and environ mental applications. Journal of Hazardous Materials, 461, Article 132538. https://doi.org/10.1016/j.jhazmat.2023.132538

61. Zhu, Y., Wang, W., Li, M., Zhang, J., Ji, L., Zhao, Z. et al. (2022). Microbial diversity of meat products under spoilage and its controlling approaches. Frontiers in Nutrition, 9, Article 1078201. https://doi.org/10.3389/fnut.2022.1078201

62. Luong, N.-D. M., Coroller, L., Zagorec, M., Membré, J. -M., Guillou, S. (2020). Spoilage of chilled fresh meat products during storage: A quantitative analysis of literature data. Microorganisms, 8(8), Article 1198. https://doi.org/10.3390/microorganisms8081198

63. Karanth, S., Feng, S., Patra, D., Pradhan, A. K. (2023). Linking microbial contamination to food spoilage and food waste: The role of smart packaging, spoilage risk assessments, and date labeling. Frontiers in Microbiology, 14, Article 1198124. https://doi.org/10.3389/fmicb.2023.1198124

64. Papadopoulou, O. S., Iliopoulos, V., Mallouchos, A., Panagou, E. Z., Chorianopoulos, N., Tassou, C. C. et al. (2020). Spoil age potential of pseudomonas (P. fragi, P. putida) and LAB (Leuconostoc mesenteroides, Lactobacillus sakei) strains and their volatilome profile during storage of sterile pork meat using GC/MS and data analytics. Foods, 9(5), Article 633. https://doi.org/10.3390/foods9050633

65. Illikoud, N., Rossero, A., Chauvet, R., Courcoux, P., Pilet, M. F., Charrier, T. et al. (2019). Genotypic and phenotypic characterization of the food spoilage bacterium Brochothrix thermosphacta. Food Microbiology, 81, 22–31. https://doi.org/10.1016/j.fm.2018.01.015

66. Falowo, A. B., Fayemi, P. O., Muchenje, V. (2014). Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research Internation al, 64, 171–181. https://doi.org/10.1016/j.foodres.2014.06.022

67. Zhang, W., Xiao, S., Ahn, D. U. (2013). Protein oxidation: Basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191–1201. https://doi.org/10.1080/10408398.2011.577540

68. Min, B., Ahn, D. U. (2005). Mechanism of lipid peroxidation in meat and meat products — A review. Food Science and Biotechnology, 14(1), 152–163.

69. Amaral, A. B., Solva, M. V. da, Lannes, S. C. da S. (2018). Lip id oxidation in meat: Mechanisms and protective factors — A review. Food Science and Technology, 38(suppl 1), 1–15. https://doi.org/10.1590/fst.32518

70. Chaijan, M. (2007). Review: Lipid and myoglobin oxidations in muscle foods. Songklanakarin Journal of Science and Technology, 30(1), 47–53.

71. Lima, D. M., Rangel, A. H. do N., Urbano, S. A., More no, G. M. B. (2013). Lipid oxidation and lamb meat quality. Acta Veterinaria Brasilica, 7(1), 14–28. (In Portuguese)

72. Purriños, L., Franco, D., Carballo, J., Lorenzo, J. M. (2012). Influence of the salting time on volatile compounds during the manufacture of dry-cured pork shoulder "lacón". Meat Science, 92(4), 627–634. https://doi.org/10.1016/j.meat-sci.2012.06.010

73. Wójciak, K. M., Dolatowski, Z. J. (2012). Oxidative stability of fermented meat products. Acta Scientiarum Polonorum. Technologia Alimentaria, 11(2), 99–109.

74. Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., Lorenzo, J. M. (2019). A comprehensive review on lip id oxidation in meat and meat products. Antioxidants, 8(10), Article 429. https://doi.org/10.3390/antiox8100429

75. Ross, C. F., Smith, D. M. (2006). Use of volatiles as indicators of lipid oxidation in muscle foods. Comprehensive Re views in Food Science and Food Safety, 5(1), 18–25. https://doi.org/10.1111/j.1541-4337.2006.tb00077.x

76. Lorenzo, J. M., Gomez, M. (2012). Shelf life of fresh foal meat under MAP, overwrap and vacuum packaging conditions. Meat Science, 92(4), 610–618. https://doi.org/10.1016/j.meat-sci.2012.06.008

77. Wasowicz, E., Gramza, A., Hes, M., Jelen, H. H., Korczak, J., Malecka, M. et al. (2004). Oxidation of lipids in food. Polish Journal of Food and Nutrition Sciences, 13(S1), 87–100.

78. Erickson, M. C. (2002). Lipid oxidation of muscle foods. Chapter in a book: In food lipids. Chemistry, nutrition, and biotechnology. Marcel Dekker, Inc., 2002. https://doi.org/10.1201/9781420046649.ch12

79. Chaijan, M., Panpipat, W. (2016). Mechanism of Oxidation in Foods of Animal Origin Chapter in a book: Natural Antioxidants. Academic Press, 2016. https://doi.org/10.1201/9781315365916-2

80. Gordon, M. H. (2001). The development of oxidative rancidity. Chapter in a book: Antioxidants in food-practical applications. CRC Press, 2001. https://doi.org/10.1016/9781855736160.1.5

81. Lynch, M. P., Faustman, C., Silbart, L. K., Rood, D., Furr, H. C. (2008). Detection of lipid-derived aldehydes and aldehyde: Protein adducts in vitro and in beef. Journal of Food Science, 66(8), 1093–1099. https://doi.org/10.1111/j.1365-2621.2001.tb16087.x

82. Estévez, M., Ventanas, S., Cava, R. (2005). Protein oxidation in frankfurters with increasing levels of added rosemary essential oil: Effect on color and texture deterioration. Journal of Food Science, 70(7), 427–432.

83. Stadtman, E. R. (1990). Metal ion-catalyzed oxidation of proteins: Biochemical mechanism and biological consequences. Free Radical Biology and Medicine, 9(4), 315–325. https://doi.org/10.1016/0891-5849(90)90006-5

84. Butterfield, D. A., Stadtman, E. R. (1997). Protein Oxidation Processes in Aging Brain. Chapter in a book: Advanc es in Cell Aging and Gerontology, JAI PRESS INC. 1997. https://doi.org/10.1016/S1566-3124(08)60057-7

85. Lund, M. N., Baron, C. P. (2010). Protein oxidation in foods and food quality. Chapter in a book: Chemical Deterioration and Physical Instability of Food and Beverages. Woodhead Publishing, 2010. https://doi.org/10.1533/9781845699260.1.33

86. Rowe, L. J., Maddock, K. R., Lonergan, S. M., Huff-Loner gan, E. (2004). Oxidative environments decrease tenderization of beef steaks through inactivation of μ-calpain. Journal of Animal Science, 82(11), 3254–3266. https://doi.org/10.2527/2004.82113254x

87. Lorenzo, J. M., Domínguez-Valencia, R., Carballo, J. (2017). Control of Lipid Oxidation in Muscle Food by Active Pack aging Technology. Chapter in a book: Natural Antioxidants. Applications in Foods of Animal Origin. Apple Academic Press Inc., 2017. https://doi.org/10.1201/9781315365916-10

88. Cheng, J. H. (2016). Lipid oxidation in meat. Journal of Nu trition and Food Sciences, 6(3), Article 494.

89. Min, B., Nam, K. C., Cordray, J., Ahn, D. U. (2008). Endogenous factors affecting oxidative stability of beef loin, pork loin, and chicken breast and thigh meats. Journal of Food Science, 73(6), 439–446. https://doi.org/10.1111/j.1750-3841.2008.00805.x

90. Barden, L., Decker, E. A. (2016). Lipid oxidation in low moisture food: A review. Critical Reviews in Food Science and Nutrition, 56(15), 2467–2482. https://doi.org/10.1080/10408398.2013.848833

91. Yin, M. -C., Faustman, C. (1993). Influence of temperature, pH, and phospholipid composition upon the stability of myoglobin and phospholipid: A liposome model. Journal of Agricultural and Food Chemistry, 41, 853–857.

92. Richards, M. P. (2005). Lipid chemistry and biochemistry. Chapter in a book: Food science, technology, and engineering. CRC Press, 2005.

93. Saito, K., Jin, D. H., Ogawa, T., Muramoto, K., Hatakeyama, E., Yasuhara, T. et al. (2003). Antioxidative properties of tri peptide libraries prepared by the combinatorial chemistry. Journal of Agricultural and Food Chemistry, 51(12), 3668– 3674. https://doi.org/10.1021/jf021191n

94. Guiotto, A., Calderan, A., Ruzza, P., Borin, G. (2005). Carnosine and carnosine-related antioxidants: A review. Current Medicinal Chemistry, 12(20), 2293–2315. https://doi.org/10.2174/0929867054864796

95. Bonilla, J., Vargas, M., Atarés, L., Chiralt, A. (2014). Effect of chitosan essential oil films on the storage-keeping quality of pork meat products. Food and Bioprocess Technology, 7(8), 2443–2450. https://doi.org/10.1007/s11947-014-1329-3

96. Sarıcaoglu, F. T., Turhan, S. (2020). Physicochemical, antioxidant and antimicrobial properties of mechanically deboned chicken meat protein films enriched with various essential oils. Food Packaging and Shelf Life, 25, Article 100527. https://doi.org/10.1016/j.fpsl.2020.100527

97. Shaltout, F. A., Thabet, M.G., Koura, H. A. (2017). Impact of some essential oils on the quality aspect and shelf life of meat. Benha Veterinary Medical Journal, 33(2), 351–364. https://doi.org/10.4172/2155-9600.1000647

98. Shahbazi, Y., Karami, N., Shavisi, N. (2017). Effect of Ziziphora clinopodioides essential oil on shelf life and fate of Lis teria monocytogenes and Staphylococcus aureus in re frigerated chicken meatballs. Journal of Food Safety, 38(1), Article e12394. https://doi.org/10.1111/jfs.12394

99. Can, Ö. P., Şahin, S. (2019). Effect of rosemary essential oil coated vacuum packaging on the quality of chicken meat balls at +4°C. Turkish Journal of Agriculture — Food Science and Technology, 7(12), 2165–2169. https://doi.org/10.24925/turjaf.v7i12.2165-2169.2927

100. Hernandez, H., Frankova, A., Kluocek, P., Banaout, J. (2018). The effect of the application of thyme essential oil on microbial load during meat drying. Journal of Visualized Experiments, 133, Article e57054. https://doi.org/10.3791/57054

101. Šojić, B., Tomović, V., Kocić-Tanackov, S., Škaljac, S., Ikonić, P., Džinić, N. et al. (2015). Effect of nutmeg (Myristica fragrans) essential oil on the oxidative and microbial stability of cooked sausage during refrigerated storage. Food Control, 54, 282–286. https://doi.org/10.1016/j.foodcont.2015.02.007

102. Hernández, H., Fraňková, A., Sýkora, T., Klouček, P., Kouřimská, L., Kučerová, I. et al. (2017). The effect of oregano essential oil on microbial load and sensory attributes of dried meat. Journal of the Science of Food and Agriculture, 97(1), 82–87. https://doi.org/10.1002/jsfa.7685

103. Wang, Y., Du, Y. -T., Xue, W. -Y., Wang, L., Li, R., Jiang, Z. -T. et al. (2023). Enhanced preservation effects of clove (Syzygium aromaticum) essential oil on the processing of Chinese bacon (preserved meat products) by beta cyclodextrin metal organic frameworks (β-CD-MOFs). Meat Science, 195, Article 108998. https://doi.org/10.1016/j.meatsci.2022.108998

104. Van Haute, S., Raes, K., Van der Meeren, P., Sampers, I. (2016). The effect of cinnamon, oregano and thyme essential oils in marinade on the microbial shelf life of fish and meat products. Food Control, 68, 30–39. https://doi.org/10.1016/j.foodcont.2016.03.025

105. Nikzadeh, H., Abdollahi, P., Weisany, W., Yousefi, S. (2025). Nanoencapsulated Menthapulegium essential oil enhances the preservation of meat quality. Applied Food Research, 5(2), Article 101204. https://doi.org/10.1016/j.afres.2025.101204

106. Cheng, C., He, X., Li, H., Zhang, Y., Sun, S., Liu, G. et al. (2024). Study on the antibacterial activity of Litsea essential oil nanoemulsion and its effect on the storage quality of duck meat. Journal of Molecular Liquids, 410, Article 125610. https://doi.org/10.1016/j.molliq.2024.125610

107. Karimi, A., Aminzare, M., Hassanzadazar, H., Hashemi, M., Roohinejad, S., Bekhit, A. E. D. A. (2025). Enhancing oxidative stability and sensory properties of ostrich meat using Malva neglecta mucilage nanocomposite coating loaded with Myrtus communis essential oil during refrigeration. Food Chemistry: X, 27, Article 102455. https://doi.org/10.1016/j.fo-chx.2025.102455

108. Marume, U., Zvarivadza, W., Hugo, A. (2024). Artemisia afra essential oils inclusion in diets induces desirable effects on meat quality and fatty acid profiles of broilers chickens. Veterinary and Animal Science, 25, Article 100390. https://doi.org/10.1016/j.vas.2024.100390

109. Zhu, S., Zhang, H., Yang, M., Chen, Y., Hao, Y., Liu, L. et al. (2016). Antibacterial and antibiofilm efficacies of calaman si essensial oil on Staphylococcus aureus and its application in chicken preservation. Food Control, 179, Article 111556. https://doi.org/10.1016/j.foodcont.2025.111556

110. Li, M., Liang, T., Shu, Y., Cheng, M., Wang, H., Khan, S. et al. (2025). Fabrication and characterization of Artemisia sphaerocephala Krasch. Gum-based active films containing coriander essential oil emulsion for meat preservation. International Journal of Biological Macromolecules, 309, Article 142809. https://doi.org/10.1016/j.ijbiomac.2025.142809

111. Manjankattil, S., Dewi, G., Peichel, C., Creek, M., Bina, P., Johnson, T. J. et al. (2025). Effect of pimenta essential oil and peracetic acid as pre-grind dip treatments on emerging Sal monella, spoilage bacteria, and quality attributes of ground turkey during chilled storage. Poultry Science, 104(4), Article 104829. https://doi.org/10.1016/j.psj.2025.104829

112. Taherzadeh, E., Arianfar, A., Mahdian, E., Mohseni, S. (2025). Impact of nanoemulsion of Ajwain-cardamom essential oils on Mortadella sausage quality during chilling (4 °C) storage. Heliyon, 11(1), Article e41643. https://doi.org/10.1016/j.heliyon.2025.e41643


Review

For citations:


Afidah U., Wardhani R., Putri A. Effect of essential oils in meat. Theory and practice of meat processing. 2025;10(4):351-365. https://doi.org/10.21323/2414-438X-2025-10-4-351-365

Views: 7

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)