The therapeutic role of the alcoholic extract of Gundelia tourneofortti l. in Salmonella typhimurium infection and its health effects in laboratory rats
https://doi.org/10.21323/2414-438X-2025-10-2-147-155
Abstract
This study investigates the effectiveness of the alcoholic extract of Gundelia tournefortii L. in mitigating the effects of Salmonella Typhimurium infection on hematological parameters and liver and kidney function in laboratory animals. S. Typhimurium was isolated from 23 samples of food and stool collected from pediatric patients (aged 1–6 years) with diarrhea at Salah al-Din Hospital. The findings indicate that infection with S. Typhimurium led to a significant increase (P < 0.05) in total white blood cell (WBC) and platelet counts, reaching 28.16 × 10³/µL and 713 × 10³/µL, respectively, compared to the control values of 8.50 × 10³/µL and 658 × 10³/µL. Conversely, red blood cell (RBC) and hemoglobin (Hb) levels were significantly reduced (P < 0.05) in infected animals, measuring 5.79 × 10⁶/µL and 13.0 g/dL, respectively, compared to 4.60 × 10⁶/µL and 14.10 g/dL in the control group. Liver function tests revealed elevated levels of alkaline phosphatase (ALP), aspartate aminotransferase (AST), and alanine aminotransferase (ALT) in infected rats, with values of 164.0, 142.0, and 66.0 IU/L, respectively, compared to the control values. Renal function analysis showed a significant increase (P < 0.05) in urea concentration in the infected group (48.5 mg/dL) relative to the controls (41.2 mg/dL), while no significant differences were observed in creatinine levels between groups. Notably, administration of the alcoholic extract at doses of 200 and 400 µg/kg significantly mitigated the adverse effects of infection, demonstrating its potential therapeutic efficacy.
About the Authors
Ya. I. Al-HadidyTikrit University
Iraq
Yasmeen I. Al-Hadidy, hD, Associate Professor
College of Agriculture; Department of Food Sciences
34001;Tikrit
Tel.: +964–770–516–62–97
Gh. H. Abdulkreem
Tikrit University
Iraq
Ghenaa H. Abdulkreem, PhD, Lecturer
College of Agriculture; Department of Food Sciences
34001; Tikrit
Tel.: +964–770–516–62–97
Ch. M. Werdi
University of Kirkuk
Iraq
Chalang M. Werdi, MSC, Assistant Lecturer
College of Veterinary Medicine; Department of Veterinary public health
36006; Taza
Tel.: +964–770–661–47–34
S. T. Hadi
University of Anbar
Iraq
Sara T. Hadi, MSC, Associate Professor
College of Agriculture; Department of Food Sciences
Ramadi; Anbar
Tel.: +964–780–214–64–20
A. B. Altemimi
University of Basrah; University of Warith Al-Anbiyaa
Iraq
Ammar B. Altemimi, Professor
College of Agriculture; Department of Food Science; College of Medicine
61004; Basrah; 56001; Karbala
Tel.: +964–773–564–00–90
T. G. Abedelmaksoud
Cairo University
Egypt
Tarek G. Abedelmaksoud, Associate Professor
Faculty of Agriculture; Food Science Department
12613; 1 Gamaa Street; Giza
Tel.: +2–0110–144–12–80
References
1. Nair, D.V.T., Venkitanarayanan, K., Johny, A.K. (2018). Antibiotic — resistant Salmonella in the food supply and the potential role of antibiotic alternatives for control. Foods, 7(10), Article 167. doi: 10.3390/foods7100167
2. Jackson, B. R., Griffin, P. M., Cole, D., Walsh, K. A., Chai, S. J. (2013). Outbreak-associated Salmonella enterica serotypes and food commodities, United States, 1998–2008. Emerging Infectious Diseases, 19(8), 1239–1244. doi: 10.3201/eid1908.121511
3. Fasciano, A., Hallenbeck, P.C. (1991). Mutations in trans that affect formate dehydrogenase (fdhF) gene expression in Salmonella typhimurium. Journal of Bacteriology, 173(18), 5893–5900. doi: 10.1128/jb.173.18.5893-5900.1991
4. Brenner, F.W., Villar, R.G., Angulo, F.J., Tauxe. R., Swaminathan. B. (2000). Salmonella nomenclature. Journal of Clinical Microbiology, 38(7), 2465–2467. doi: 10.1128/JCM.38.7.2465-2467.2000
5. Settanni, L., Corsetti, A. (2007). The use of multiplex PCR to detect and differentiate food- and beverage-associated microorganisms : A review. Journal of Microbiological Methods, 69(1), 1–22. doi: 10.1016/j.mimet.2006.12.008
6. Gantois, I., Ducatelle, R., Pasmans, F., Haesebrouck, F., Van Immerseel, F. (2008). Salmonella enterica serovar Enteritidis genes induced during oviduct colonization and egg contamination in laying hens. Applied and Environmental Microbiology, 74(21), 6616–6622. doi: 10.1128/AEM.01087-08
7. Da Ayoubi, A. Baradari, B. (2015). Antibacterial Activity of Gundelia tournefortii Compounds against Salmonella choleraesuis. Biological Forum — An International Journal, 7(2), 1076–1081.
8. Gal-Mor, O., Boyle, O.E., Grassl. G.A. (2014). Same species, different diseases: How and why typhoidal and non-typhoidal Salmonella enterica serovars differ. Frontiers in Microbiology, 5(1), Article 391. doi: 10.3389/fmicb.2014.00391
9. Pal, M., Merera, O., Abera, F., Rahman, M. T., Hazarika, R. A. (2015). Salmonellosis: A major foodborne disease of global significance. Beverage Food World, 42(12), 21–24.
10. CDC. (2024). Chicken and Food Poisoning Retrieved from https://www.cdc.gov/food-safety/foods/chicken.html Accessed January 25, 2025.
11. Ryan, M.P., O’Dwyer, J., Adley, C.C. (2017). Evaluation of the complex nomenclature of the clinically and veterinary significant pathogen Salmonella. BioMed Research International, 2017, Article 3782182. doi: 10.1155/2017/3782182
12. Kingsley, R.A., Bäumler, A.J. (2000). Host adaptation and the emergence of infectious disease: The Salmonella paradigm. Molecular Microbiology, 36, 1006–1014. doi: 10.1046/j.1365-2958.2000.01907.x
13. Kirk, M.D., Pires, S. M. Black, R.E., Caipo, M., Crump, J.A., Devleesschauwer, B. et al. (2015). World Health Organization estimates of the global and regional disease burden of 22 foodborne bacterial, protozoal, and viral diseases, 2010: A data synthesis. PLOS Medicin, 12(12), Article e1001921. doi: 10.1371/journal.pmed.1001921
14. Malorny, B., Tassios, P.T., Rådström, P., Cook, N., Wagner, M. Hoorfar, J. (2003). Standardization of diagnostic PCR for the detection of foodborne pathogens. International Journal Food Microbiology, 83(1), 39–48. doi: 10.1016/s0168-1605(02)00322-7
15. Lampel, K.A., Orlandi, P.A., Kornegay, L. (2000). Improved template preparation for PCR-based assays for detection of food-borne bacterial pathogens. Applied and Environmental Microbiology, 66, 4539–4542. doi: 10.1128/AEM.66.10.4539-4542.2000
16. ISO 6579–1:2017. Microbiology of the food chain — Horizontal method for the detection, enumeration and serotyping of Salmonella. Part 1: Detection of Salmonella spp.
17. Jeníková, G., Pazlarová, J., Demnerová, K. (2000). Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. International Microbiology, 3(4), 225–229.
18. Greenwell, M., Rahman, P.K.S.M. (2017). Medicinal plants: Their use in their use in anti-cancer treatment. International Journal of Pharmaceutical Sciences and Research, 6(2), 4103–4112. doi: 10.13040/IJPSR.0975-8232.6(10).4103-12
19. Nelson, S. (2019). The antibacterial activity of essential oils from Tagetes erecta and Thuja occidentalis. Cantaurus, 27, 29–33.
20. Al-Hadidy, Y. I., Yaseen, S.S., Saleh, G.M. (2019). The inhibitory effect of some plant extracts on some pathogenic bacteria. Tikrit Journal of Pure Science, 24(1), 62–69. doi: 10.25130/tjps.v24i1.331
21. Mustafa, H.H., Elahmar, M.A.I., Hameed, R.T., Alsultan, M., Nesseef, L. Swiegers, G.F. (2022). Extraction and identification of effective compounds from natural plants. Journal of Composites Science, 6(5), Article 149. doi: 10.3390/jcs6050149
22. Salih, A. I., Saleh, H.M., Khalaf, A.S., Ayed, S.H. (2022). Effect of Moringa oleifera leaves against hepatotoxicity induced by Bisphenol A. Archives of Razi Institute, 77(3), 1083–1089. doi: 10.22092/ARI.2022.357
23. Hani, N., Abulaila, K., Howes, M., Mattana, E., Bacci, S., Sleem, K. et al. (2024). Gundelia tournefortii L. (Akkoub) : A review of a valuable wild vegetable from Eastern Mediterranean. Genetic Resources and Crop Evolution, 71(8), 3987–3995. doi: 10.1007/s10722-024-01927-2
24. Hadi, S.T., Hussien, H.D., Abed, M.A., Alhadithi, A.J. (2020). Chemical analysis of ginger rhizomes and sensory and microbial evaluation of Ginger Juice during storage. International Journal of Pharmaceutical Quality Assurance, 11(4), 534–537. doi: 10.25258/ijpqa.11.4.14
25. Asadi-Samani, M., Rafieian-Kopaei, M., Azimi, N. (2013). Gundelia : A systematic review of medicinal and molecular perspective. Pakistan Journal of Biological Sciences, 16(21), 1238–1247. doi: 10.3923/pjbs.2013.1238.1247
26. Nadiroğlu, M., Behçet, L. (2018). Traditional food uses of wild plants among the Karlıova (Bingöl-Turkey). International Journal of Nature Life Sciences, 2(2), 57–71.
27. FAO. (2017). The future of food and agriculture — Trends and challenges. Rome. Retrieved from https://openknowledge.fao.org/items/ede32306-aeec-4891-9fe6-7e4f2fd93143 Accessed January 15, 2025.
28. Kawarty, A.M.A.M., Behçet, L., Çakılcıoğlu, U. (2020). An ethnobotanical survey of medicinal plants in Ballakayati (Erbil, North Iraq).Turkish Journal of Botany, 44(3), 345–357. doi: 10.3906/bot-1910-39
29. Farhang, H.R., Vahabi, M.R., Allafchian, A.R. (2016). Chemical compositions of the essential oil of Gundelia tournefortii L. (Asteraceae) from central Zagros, Iran, Journal of Herbal Drugs, 6(4), 227–233.
30. Ziabaree, M. H. (2001). The Oil Refining and Technology. Olome Keshavarzee Publications, Tehran, Iran, 2001.
31. Matthäus, B., Özcan, M. M. (2011). Chemical evaluation of flower bud and oils of tumbleweed (Gundelia tournefortii L.) as a new potential nutrition sources. Journal of Food Biochemistry, 35(4), 1257–1266. doi: 10.1111/j.1745-4514.2010.00449.x
32. Abu-Lafi, S., Rayan, B., Kadan S, Abu-Lafi, M., Rayan, A. (2019) Anticancer activity and phytochemical composition of wild Gundelia tournefortii. Oncology Letters, 17(1), 713–717. doi: 10.3892/ol.2018.9602
33. Baydoun, S., Chalak, L., Dalleh, H., Arnold, N. (2015). Ethnopharmacological survey of medicinal plants used in traditional medicine by the communities of Mount Hermon, Lebanon. Journal of Ethnopharmacology, 173, 139–156. doi: 10.1016/j.jep.2015.06.052
34. Jassim R. S., Badawy A., Maaroof M. N. (2019). Use of orange husk and watercress (Eruca sativa) seed extracts as antimicrobial natural preservative for fruit juices. Tikrit Journal for Agricultural Sciences, 19(1), 69–76. doi: 10.25130/tjas.19.1.7
35. Ali, D.S., Khalaf, D.S. (2023). Chemical composition, radical scavenging, rheological and sensory properties of local soft cheese (Paneeri Salik) supplemented with some natural anti-oxidant extracts, Tikrit Journal for Agricultural Sciences, 23(4), 43–57. doi: 10.25130/tjas.23.4.5
36. de la Luz Cádiz-Gurrea, M., Zengin, G., Leyva-Jiménez, F. J., Fernández-Ochoa, A., Sinan, K. I., Cakilcioglu, U. et al. (2020). A comparative assessment of biological activities of Gundelia dersim Miller and Gundelia glabra Vitek, Yüce and Ergin extracts and their chemical characterization via HPLC-ESI-TOF-MS. Process Biochemistry, 94(4), 143–151. doi: 10.1016/j.procbio.2020.04.002
37. Tarhan, A., Firat, M. Topal, G. (2023). Comprehensive study of all Gundelia L. taxa exists in the globe: An insight on LC–MS/MS based phytochemical investigation and bioactivity potential of 22 species. Journal of Biochemical Systematics and Ecology, 109(26), Article 104672. doi: 10.1016/j.bse.2023.104672
38. Baron, E.J., Peterson, L.R., Fingold, S.E. (1994). Bailey and Scott’s Diagnostic Microbiology. Mosby Company, Baltimore, 1994.
39. Forbes, B.E., Sahm, D.F., Weissfeld, A. S. (2002). Bailey and Scott’s Diagnostic Microbiology. St. Louis, MO: Mosby, USA, 2002.
40. Brown, D. F. J., Edwards, D.I., Hawkey, P.M., Morrison, D., Ridgway, G.L., Towner, K.J. et al. (2005). Guidelines for the laboratory diagnosis and susceptibility testing of methicillinresistant Staphylococcus aureus (MRSA). Journal of Antimicrobial Chemotherapy, 56(6), 1000–1018. doi: 10.1093/jac/dki372
41. Atlas, R. M., Parks, L.C., Brown, A.E. (1995). Laboratory manual of experimental microbiology. Retrieved from https://www.scienceopen.com/document?vid=1b85b53d-0653–4adab301-d05905da16c9 Accessed January 17, 2025.
42. Collee, J. G., Fraser, A.G., Marmino, B.P., Simmons, A. (1996). Practical medical microbiology. Churchill Livingstone Inc., New York, 1996.
43. Benson, H. J. (2001). Microbiological applications: Laboratory manual in general microbiology. McGraw-Hill companies, Inc. New York, 2001.
44. Grimont, P.A.D., Weill, F.-X. (2007). Antigenic Formulas of the Salmonella Serovars. WHO Collaborating Center for Reference Research on Salmonella. Pasteur Institute, Paris, France, 2007.
45. Brenner, F., McWhorter-Murlin, A. (1998). Supplement 1997 (no. 41) to the Kauffmann — White scheme. Research in Microbiology, 149(8), 601–604. doi: 10.1016/s0923-2508(99)80008-4
46. Popoff, M.Y., Bockemühl, J., Gheesling, L.L. (2004). Supplement 2002 (no. 46) to the KauffMann — White scheme. Research in Microbiology, 155(7), 568–570. doi: 10.1016/j.resmic.2004.04.005
47. Davis, P.H. (1967). Geranium L. Chapter in a book: Flora of Turkey. Edinburgh University press, 1967.
48. Hernández-Pérez, M., López-García, R.E., Rabanal, R.M., Darias, V., Arias, A. (1994). Antimicrobial activity of Visnea mocanera leaf extract. Journal of Ethnopharmacology, 41(1–2), 115–119. doi: 10.1016/0378-8741(94)90065-5
49. Messora M. R., Pereira L. J., Foureaux R., Oliveira L. F. F., Sordi C. G., Alves A. J. N. et al. (2016). Favourable effects of Bacillus subtilis and Bacillus licheniformis on experimental periodontitis in rats. Archives of Oral Biology, 66, 108–119. doi: 10.1016/j.archoralbio.2016.02.014
50. Burtis, C.A., Ashwood, E.R., Bruns, D.E. (2006). Textbook of Clinical Chemistry and Molecular Diagnostics. Elsevier Health Sciences, 2006.
51. SAS (2001). SAS User’s guide: Statistics. SAS Institute, 2001.
52. Duncan, D. (1955). Multiple range and multiple F-Test. Biometrics, 11(1), 1–42. doi: 10.2307/3001478
53. Carr, F.J., Chill, D., Maida, N. (2002). The lactic acid bacteria: A literature survey. Critical Reviews in Microbiology, 28(4), 281–370. doi: 10.1080/1040-840291046759
54. Abd Elhalim, S.A., Sharada, H.M., Abulyazid, I., Aboulthana, W.M., Abd Elhalim, S.T. (2017). Ameliorative effect of carob pods extract (Ceratonia siliqua L.) against cyclophosphamide induced alterations in bone marrow and spleen of rats. Journal of Applied Pharmaceutical Science, 7(10), 168–181. doi: 10.7324/japs.2017.71025
55. Werdi, C. M., Al-Hadidy, Y. I. (2023). Effectiveness of Bacillus clausii and Bacillus megaterium on some physiological and biochemical parameters in rats that induced diarrhea. IOP Conference Series: Earth and Environmental Science, 1158(11), Article 112012. doi: 10.1088/1755-1315/1158/11/112012
56. Hanna, S.J., Al-Salhie, K.C.K. (2024). Evaluate the impact of the alcoholic extract of eruca sativa seeds on the physiological and productive responses of broiler chickens exposed to lead acetate-induced oxidative stress. Tikrit Journal for Agricultural Sciences, 24(3), 284–295. doi: 10.25130/tjas.24.3.22
57. Martins, V., Dias, C., Caldeira, J., Duarte, L.C., Reis, A. da Silva, T.L. (2018). Carob Pulp Syrup: A potential mediterranean carbon source for carotenoids production by Rhodosporidium toruloides NCYC921. Bioresource Technology Reports, 3, 177–184. doi: 10.1016/j.biteb.2018.07.008
58. Alaobady, F.A.H., Thalj, K. M. (2024). Evaluation of the antioxidant and inhibitory activity of Aloe vera plant extract (Fermented by Lactobacillus plantarum bacteria) against the pathogenic bacteria isolated from diarrhea infections. Tikrit Journal for Agricultural Sciences, 24(1), 246–262. doi: 10.25130/tjas.24.1.20
59. Sultan, L. J., Fadhil, W. G., Hamid, M. M., Hadi, S. T. (2024). A comparative study of the effect of extracts extracted from Ocimum basilicum leaves using organic extract and essential oil. Functional Foods in Health and Disease, 14(6), 380–387. doi: 10.31989/ffhd.v14i6.1304
60. Iranloye, B. O. (2002). Effect of chronic garlic feeding on some haematological parameters. African Journal of Biomedical Research, 5(1–2), 81–82.
61. AL-Kadhi, N. A., Ibrahim, E.K., Khalaf, R. N., Abass, K. S., Abass, Q. S. (2020). Antioxidant effect of gundelia tournefortii extract on some physiological, biochemical and histopathological changes in male rats. The Journal of Research on the Lepidoptera, 51(1), 479–495.
62. Amer, J., Salhab, A., Jaradat, N., Abdallah, S., Aburas, H., Hattab, S. et al. (2022). Gundelia tournefortii inhibits hepatocellular carcinoma progression by lowering gene expression of the cell cycle and hepatocyte proliferation in immunodeficient mice. Journal Biomedicine and Pharmacotherapy, 156, Article 113885. doi: 10.1016/j.biopha.2022.113885
63. Saleh, A.A., Salman, W.A., Abdullah, S.M. (2022). Effect of Gundelia tournefortii extract in some physiological and biochemical parameters changes induced by Pseudomonas aeruginosa. Journal of the College of Basic Education, 23(99), 69–84. doi: 10.35950/cbej.v23i99.6606
64. Sarhan, I. G.h., Al-Hadidy, Y. I., Weshah, Sh. F. (2023). Effect of gundelia tournefortii l. extract on lipid profile and flora balance in rats exposed to experimental pseudomonas aeruginosa infection. Anbar Journal of Agricultural Sciences, 12(2), 366–376. doi: 10.32649/ajas.2023.181867
65. Anraku, M., Takeuchi, K., Watanabe, H., Kadowaki D., Kitamura, K., Tomita, K. et al. (2011). Quantitative analysis of Cysteine-34 on the anitioxidative properties of human serum albumin in hemodialysis patients. Journal of Pharmaceutical Sciences, 100(9), 3968–3976. doi: 10.1002/jps.22571
66. Ahmed, M.N. (2012). Using body mass index to find the effect of obesity and overweight on the recurrence of kidney stones in the western region of Iraq. Anbar University Journal of Pure Sciences, 6(1), 32–39.
67. Werdi, C. M., Al-Hadidy, Y. I. (2023). The effectiveness of the Probiotic bacillus spp in induced infection with Staphylococcus aureus and the study of its effect on liver enzymes, kidney function and microbial balance of the gut in male rats. IOP Conference Series: Earth and Environmental Science, 1158(11), Article 112013. doi: 10.1088/1755-1315/1158/11/112013
68. Rabizadeh, F. Mirian, M.S. (2024). The Classification of medicinal plants used in traditional Persian medicine for the treatment of liver disease based on phytochemical properties. Journal of Medicinal Plants and By-products, 13(2), 257–284.
Review
For citations:
Al-Hadidy Ya.I., Abdulkreem G.H., Werdi Ch.M., Hadi S.T., Altemimi A.B., Abedelmaksoud T.G. The therapeutic role of the alcoholic extract of Gundelia tourneofortti l. in Salmonella typhimurium infection and its health effects in laboratory rats. Theory and practice of meat processing. 2025;10(2):147-155. https://doi.org/10.21323/2414-438X-2025-10-2-147-155