Preview

Theory and practice of meat processing

Advanced search

Identification of priority bacterial groups to optimize sanitary procedures at meat processing plants

https://doi.org/10.21323/2414-438X-2025-10-2-138-146

Abstract

   This paper presents the study results of the microbiological composition in the industrial environment at four pork slaughter and processing plants (MPPs). The sample included plants with various production problems and different process features.

   The purpose of this study was to determine the priority bacterial groups typical for all studied plants, as well as to identify specific microorganisms associated with the individual characteristics of each plant.

   Representatives of Pseudomonas, Candida, and Escherichia genera dominated at all four plants, but each plant had its own unique characteristics. Thus, at MPP No. 1, where no preliminary decapitation was performed, a high level of industrial environment contamination with Escherichia genus microorganisms and pathogenic microorganisms, Salmonella spp. and Listeria monocytogenes, was observed. At MPP No. 2, which allows the acceptance of raw materials with defects, a significant counts of Staphylococcus genus microorganisms were detected. Pseudomonas, Carnobacterium, and Enterobacteriaceae genera were detected at MPPs No. 3 and No. 4, where systematic spoilage of finished products was revealed. Analysis results showed that individual technological stages and conditions at different plants create a unique environment that promotes the development of certain groups of microorganisms. The introduction of expanded microbiological monitoring, changes in technology, and the development of individual recommendations for each plant will reduce the risks of microbial contamination, improve product quality, and increase its safety for consumers.

About the Authors

A. A. Makhova
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Anzhelika A. Makhova, Researcher

Laboratory of Hygiene of Production and Microbiology

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (400)



Yu. K. Yushina
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Yulia K. Yushina, Doctor of Technical Sciences, Head of the Laboratory

Laboratory of Hygiene of Production and Microbiology

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (410)



E. V. Zaiko
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Elena V. Zaiko, Candidate of Technical Sciences, Junior Research Assistant

Laboratory of Hygiene of Production and Microbiology

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (407)



M. A. Grudistova
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Maria A. Grudistova, Candidate of Technical Sciences, Researcher

Laboratory of Hygiene of Production and Microbiology

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (404)



References

1. Hultman, J., Rahkila, R., Ali, J., Rousu, J., Björkroth, K. J. (2015). Meat processing plant microbiome and contamination patterns of cold-tolerant bacteria causing food safety and spoilage risks in the manufacture of vacuum-packaged cooked sausages. Applied and Environmental Microbiology, 81(20), 7088–7097. doi: 10.1128/AEM.02228-15

2. Calasso, M., Ercolini, D., Mancini, L., Stellato, G., Minervini, F., Di Cagno, R. et al. (2016). Relationships among house, rind and core microbiotas during manufacture of traditional Italian cheeses at the same dairy plant. Food Microbiology, 54, 115–126. doi: 10.1016/j.fm.2015.10.008

3. Stellato, G., De Filippis, F., La Storia, A., Ercolini, D. (2015). Coexistence of lactic acid bacteria and potential spoilage microbiota in a dairy processing environment. Applied and Environmental Microbiology, 81(22), 7893–7904. doi: 10.1128/AEM.02294-15

4. Alvarez-Ordóñez, A., Coughlan, L. M., Briandet, R., Cotter, P. D. (2019). Biofilms in food processing environments: Challenges and opportunities. Annual Review of Food Science and Technology, 10(1), 173–195. doi: 10.1146/annurevfood-032818-121805

5. EFSA and ECDC. (2023). The European Union one health 2022 zoonoses report. EFSA Journal, 21(12), Article e8442. doi: 10.2903/j.efsa.2023.8442

6. Thakali, A., MacRae, J. D. (2021). A review of chemical and microbial contamination in food: What are the threats to a circular food system? Environmental Research, 194, Article 110635. doi: 10.1016/j.envres.2020.110635

7. Mota, J. D. O., Boué, G., Prévost, H., Maillet, A., Jaffres, E., Maignien, T. et al. (2021). Environmental monitoring program to support food microbiological safety and quality in food industries: A scoping review of the research and guidelines. Food Control, 130, Article 108283. doi: 10.1016/j.foodcont.2021.108283

8. Fusco, V., Abriouel, H., Benomar, N., Kabisch, J., Chieffi, D., Cho, G. S. et al. (2018). Opportunistic food-borne pathogens. Chapter in a book: Food safety and preservation. Academic Press, 2018. doi: 10.1016/B978-0-12-814956-0.00010-X

9. Casaburi, A., Piombino, P., Nychas, G. J., Villani, F., Ercolini, D. (2015). Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology, 45(Part A), 83–102. doi: 10.1016/j.fm.2014.02.002

10. Kurpas, M., Wieczorek, K., Osek, J. (2018). Ready-to-eat meat products as a source of Listeria monocytogenes. Journal of Veterinary Research, 62(1), 49–55. doi: 10.2478/jvetres-2018-0007

11. Zaher, H. A., Nofal, M. I., Hendam, B. M., Elshaer, M. M., Alothaim, A. S., Eraqi, M. M. (2021). Prevalence and antibiogram of Vibrio parahaemolyticus and Aeromonas hydrophila in the flesh of Nile tilapia, with special reference to their virulence genes detected using multiplex PCR technique. Antibiotics, 10(6), Article 654. doi: 10.3390/antibiotics10060654

12. Bai, R., Wang, X., Zou, Z., Zhou, W., Tan, C., Cao, Y. et al. (2024). Limited transmission of carbapenem-resistant Klebsiella pneumoniae between animals and humans: A study in Qingdao. Emerging Microbes and Infections, 13(1), Article 2387446. doi: 10.1080/22221751.2024.2387446

13. Center for disease control and prevention. (2013). Antibiotic resistance threats in the United States, 2013. Retrieved from http://www.cdc.gov.abcs/index.html Accessed March 10, 2025.

14. De Oliveira, D. M., Forde, B. M., Kidd, T. J., Harris, P. N., Schembri, M. A., Beatson, S. A. et al. (2020). Antimicrobial resistance in ESKAPE pathogens. Clinical Microbiology Reviews, 33(3), Article e00181–19. doi: 10.1128/cmr.00181-19

15. Oyenuga, N., Cobo-Díaz, J. F., Alvarez-Ordóñez, A., Alexa, E.-A. (2024). Overview of antimicrobial resistant ESKAPEE pathogens in food sources and their implications from a one health perspective. Microorganisms, 12(10), Article 2084. doi: 10.3390/microorganisms12102084

16. Economou, V., Gousia, P. (2015). Agriculture and food animals as a source of antimicrobial-resistant bacteria. Infection and Drug Resistance, 8, 49–61. doi: 10.2147/IDR.S55778

17. Stellato, G., La Storia, A., De Filippis, F., Borriello, G., Villani, F., Ercolini, D. (2016). Overlap of spoilage-associated microbiota between meat and the meat processing environment in small-scale and large-scale retail distributions. Applied and Environmental Microbiology, 82(13), 4045–4054. doi: 10.1128/AEM.00793-16

18. Li, N., Zhang, Y., Wu, Q., Gu, Q., Chen, M., Zhang, Y. et al. (2019). High-throughput sequencing analysis of bacterial community composition and quality characteristics in refrigerated pork during storage. Food Microbiology, 83(10), 86–94. doi: 10.1016/j.fm.2019.04.013

19. Wang, X., Deng, Y., Sun, J., Ding, Y., Liu, Y., Tian, T. (2021). Unraveling characterizations of bacterial community and spoilage profiles shift in chilled pork during refrigerated storage. Food Science and Technology, 42, Article e80321. doi: 10.1590/fst.80321

20. De Filippis, F., La Storia, A., Villani, F., Ercolini, D. (2013). Exploring the sources of bacterial spoilers in beefsteaks by culture-independent high-throughput sequencing. PLoS One, 8(7), Article e70222. doi: 10.1371/journal.pone.0070222

21. Stellato, G., Utter, D. R., Voorhis, A., De Angelis, M., Eren, A. M., Ercolini, D. (2017). A few Pseudomonas oligotypes dominate in the meat and dairy processing environment. Frontiers in Microbiology, 8, Article 264. doi: 10.3389/fmicb.2017.00264

22. Daneshnia, F., de Almeida Júnior, J. N., Ilkit, M., Lombardi, L., Perry, A. M., Gao, M. et al. (2023). Worldwide emergence of fluconazole-resistant Candida parapsilosis: Current framework and future research roadmap. The Lancet Microbe, 4(6), e470-e480. doi: 10.1016/S2666–5247(23)00067-8

23. de Andrade Cavalari, C. M., Imazaki, P. H., Pirard, B., Lebrun, S., Vanleyssem, R., Gemmi, C. et al. (2024). Carnobacterium maltaromaticum as bioprotective culture against spoilage bacteria in ground meat and cooked ham. Meat Science, 211, Article 109441. doi: 10.1016/j.meatsci.2024.109441

24. Marcelli, V., Osimani, A., Aquilanti, L. (2024). Research progress on the use of lactic acid bacteria as natural bio-preservatives against Pseudomonas spp. in meat and meat products : A review. Food Research International, 196, Article 115129. doi: 10.1016/j.foodres.2024.115129

25. Fang, J., Feng, L., Lu, H., Zhu, J. (2022). Metabolomics reveals spoilage characteristics and interaction of Pseudomonas lundensis and Brochothrix thermosphacta in refrigerated beef. Food Research International, 156, Article 111139. doi: 10.1016/j.foodres.2022.111139

26. 3M (2019). Environmental monitoring handbook for the food and beverage industries- terms and definitions (1<sup>st</sup> ed.), Cornell University. Retrieved from https://www.idfa.org/wordpress/wp-content/uploads/2020/03/3m-environmental-monitoring-handbook-09–2019.pdf Accessed May 16, 2025.

27. Gebremedhin, E. Z., Ararso, A. B., Borana, B. M., Kelbesa, K. A., Tadese, N. D., Marami, L. M. et al. (2022). Isolation and identification of Staphylococcus aureus from milk and milk products, associated factors for contamination, and their antibiogram in Holeta, Central Ethiopia. Veterinary Medicine International, 2022(1), Article 6544705. doi: 10.1155/2022/6544705

28. Wu, S., Huang, J., Wu, Q., Zhang, J., Zhang, F., Yang, X. (2018). Staphylococcus aureus isolated from retail meat and meat products in China: Incidence, antibiotic resistance and genetic diversity. Frontiers in Microbiology, 9, Article 2767. doi: 10.3389/fmicb.2018.02767

29. Simmons, C. K., Wiedmann, M. (2018). Identification and classification of sampling sites for pathogen environmental monitoring programs for Listeria monocytogenes: Results from an expert elicitation. Food Microbiology, 75, 2–17. doi: 10.1016/j.fm.2017.07.005

30. Bataeva, D.S., Minaev, M. Yu., Makhova, A.A. (2016). Identification of enterotoxigenic staphylococci in meat raw materials. Theory and Practice of Meat Processing, 1(4), 19–27. doi: 10.21323/2414-438X-2016-1-4-19-27 (In Russian)

31. Pérez-Rodríguez, F., Taban, B. M. (2019). A state-of-art review on multi-drug-resistant pathogens in foods of animal origin: Risk factors and mitigation strategies. Frontiers in Microbiology, 10, Article 2091. doi: 10.3389/fmicb.2019.02091

32. Malta, R. C. R., Ramos, G. L. de. P. A., Nascimento, J. D. S. (2020). From food to hospital: We need to talk about Acinetobacter spp. Germs, 10(4), 210–217. doi: 10.18683/germs.2020.1207

33. Casaburi, A., Piombino, P., Nychas, G. -J., Villani, F., Ercolini, D. (2015). Bacterial populations and the volatilome associated to meat spoilage. Food Microbiology, 45(Part A), 83–102. doi: 10.1016/j.fm.2014.02.002

34. Mladenović, K. G., Grujović, M. Ž., Kiš, M., Furmeg, S., Tkalec, V. J., Stefanović, O. D. et al. (2021). Enterobacteriaceae in food safety with an emphasis on raw milk and meat. Applied Microbiology and Biotechnology, 105, 8615–8627. doi: 10.1007/s00253-021-11655-7

35. Cutuli, S. L., De Maio, F., De Pascale, G., Grieco, D. L., Monzo, F. R., Carelli, S. et al. (2021). COVID-19 influences lung microbiota dynamics and favors the emergence of rare infectious diseases: A case report of Hafnia Alvei pneumonia. Journal of Critical Care, 64, 173–175. doi: 10.1016/j.jcrc.2021.04.008

36. Casanova-Román, M., Sanchez-Porto, A., Casanova-Bellido, M. (2004). Late-onset neonatal sepsis due to hafnia alvei. Scandinavian Journal of Infectious Diseases, 36(1), 70–71. doi: 10.1080/00365540310017375

37. Lee, H. S., Kwon, M., Heo, S., Kim, M. G., Kim, G. -B. (2017). Characterization of the biodiversity of the spoilage microbiota in chicken meat using next generation sequencing and culture dependent approach. Food Science of Animal Resources, 37(4), 535–541. doi: 10.5851/kosfa.2017.37.4.535

38. Hamidizade, M., Taghavi, S. M., Moallem, M., Aeini, M., Fazliarab, A., Abachi, H. et al. (2023). Ewingella americana: An emerging multifaceted pathogen of edible mushrooms. Phytopathology®, 113(2), 150–159. doi: 10.1094/PHYTO-08-22-0299-R

39. Brightwell, G., Clemens, R., Urlich, S., Boerema, J. (2007). Possible involvement of psychrotolerant Enterobacteriaceae in blown pack spoilage of vacuum-packaged raw meats. International Journal of Food Microbiology, 119(3), 334–339. doi: 10.1016/j.ijfoodmicro.2007.08.024

40. Keller, J. E., Schwendener, S., Neuenschwander, J., Ove resch, G., Perreten, V. (2022). Prevalence and characterization of-methicillin-resistant Macrococcus spp. in food producing animals and meat in Switzerland in 2019. Schweizer Archiv für Tierheilkunde, 164(2), 153–164. doi: 10.17236/sat00343


Review

For citations:


Makhova A.A., Yushina Yu.K., Zaiko E.V., Grudistova M.A. Identification of priority bacterial groups to optimize sanitary procedures at meat processing plants. Theory and practice of meat processing. 2025;10(2):138-146. https://doi.org/10.21323/2414-438X-2025-10-2-138-146

Views: 36


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)