Antioxidant effect of nigella oil on heated camel and rabbit meat
https://doi.org/10.21323/2414-438X-2025-10-2-120-127
Аннотация
The exposure of meat to heating (cooking) or cold storage could alter its chemical composition. In this work, the oxidizing effect of heating on rabbit and camel meat, and the protective effect of nigella oil (NO) were evaluated and compared. Samples of rabbit and camel meat were treated with increasing doses of NO, and then were heated until reaching an internal temperature of 80 °C. Water loss, thiobarbituric acid reactive substances (TBARS) and carbonyls levels, as well as activities of catalase (CAT), glutathione peroxidase (GSHPx) and superoxide dismutase (SOD), were analyzed at different meat storage times. The results showed that heating of camel and rabbit meat induced a significant increase in the water loss, and TBARS and carbonyls levels, associated with a significant decrease in the activities of CAT, GSHPx and SOD. In both species, TBARS and carbonyls in the meat samples treated with NO before heating were significantly (P < 0.05) lower than those in the untreated samples, and decreased more and more when the NO dose increased. In the samples treated with NO, all enzymatic activities were significantly (P < 0.05) higher than those observed in the untreated samples, and increased more and more with increasing NO dose. The findings reveal a potential antioxidant power of NO preserving the organoleptic composition of heated camel and rabbit meat.
Об авторах
Kh. RachchadHassan II University of Casablanca
Марокко
Khadija Rachchad, PhD Student
Ben M’Sick Faculty of Sciences; Physiopathology and Molecular Genetics Laboratory
20000; No. 51, Ifriquia City, Echahid Eloualid Essaghir str.; Casablanca
Tel.: +212–646–63–01–37
M. Farh
Hassan II University of Casablanca
Марокко
Mohamed Farh, Professor
Ben M’Sick Faculty of Sciences; Physiopathology and Molecular Genetics Laboratory
20000; No. 51, Ifriquia City, Echahid Eloualid Essaghir str.; Casablanca
Tel.: +212–608–22–72–09
M. E. Khasmi
Hassan II University of Casablanca
Марокко
Mohammed El Khasmi, Professor
Ben M’Sick Faculty of Sciences; Physiopathology and Molecular Genetics Laboratory
20000; No. 51, Ifriquia City, Echahid Eloualid Essaghir str.; Casablanca
Tel.: +212–608–22–72–09
Список литературы
1. Khvostov, D. V., Khryachkova, А. Yu., Minaev, M. Yu. (2024). The role of enzymes in the formation of meat and meat products. Theory and Practice of Meat Processing, 9(1), 40–52. doi: 10.21323/2414-438X-2024-9-1-40-52
2. Raiymbek, G., Kadim, I., Issa, S. A.-A., Abdulaziz, Y. A., Faye, B., Khalf, S. K. et al. (2018). Concentrations of nutrients in six muscles of Bactrian (Camelus bactrianus) camels. Journal of Camel Practice and Research, 25(1), 109–121. doi: 10.5958/2277-8934.2018.00016.4
3. Kadim, I. T., Al-Amri, I. S., Alkindi, A. Y., Haq, Q. M. (2022). Nutritional values and health benefits of dromedary camel meat. Animal Frontiers, 12(4), 61–70. doi: 10.1093/af/vfac051
4. Suvajdžić, B., Čobanović, N., Grković, N., Vićić, I., Vasilev, D. (2023). The nutritional profile and technological properties of rabbit meat. Meat Technology, 64(2), 171–176. doi: 10.18485/meattech.2023.64.2.31
5. Tabite, R., Lemrhamed, A., El Abbadi, N., Belhouari, A., Faye, B., El Khasmi, M. (2019). Relationship between circulating levels of cortisol at slaughter and changes of some parameters of the camel meat during ageing. Emirates Journal of Food and Agriculture, 31(11), 874–883. doi: 10.9755/ejfa.2019.v31.i11.2031
6. Tabite, R., Lemrhamed, A., El Khasmi, M., El Abbadi, N., Belhouari, A., Faye, B. (2019). Relationship between 25-hydro xy-vitamin D content and quality characteristics and lipid oxidation in raw and cooked camel meat during cold storage. Journal of Agriculture and Life Sciences, 6(2), 9–17. doi: 10.30845/jals.v6n2a2
7. Yang, Z., Liu, C., Dou, L., Chen, X., Zhao, L., Su, L. et al. (2022). Effects of feeding regimes and postmortem aging on meat quality, fatty acid composition, and volatile flavor of longissimus thoracis muscle in Sunit sheep. Animals, 12(22), Article 3081. doi: 10.3390/ani12223081
8. Warner, R. (2016). Meat: Conversion of muscle into meat. Chapter in a book: Encyclopedia of Food and Health. Academic Press, 2016. doi: 10.1016/B978-0-12-384947-2.00452-9
9. Maqsood, S., Abushelaibi, A., Manheem, K., Kadim, I. T. (2015). Characterisation of the lipid and protein fraction of fresh camel meat and the associated changes during refrig-erated storage. Journal of Food Composition and Analysis, 41, 212–220. doi: 10.1016/j.jfca.2014.12.027
10. Maqsood, S., Abushelaibi, A., Manheem, K., Al Rashedi, A., Kadim, I. T. (2015). Lipid oxidation, protein degradation, microbial and sensorial quality of camel meat as influenced by phenolic compounds. LWT-Food Science and Technology, 63(2), 953–959. doi: 10.1016/j.lwt.2015.03.106
11. Moussahil, A., Farh, M., Iddar, A., El Khasmi, M. (2023). Impact of stocking density associated with heat stress in camels on the biochemical characteristics of their meat. Revue d’Elevage et de Medecie Vétérinaire des Pays Tropicaux, 76, 1–6. doi: 10.19182/remvt.36951
12. Maqsood, S., Manheem, K., Abushelaibi, A., Kadim, I. T. (2016). Retardation of quality changes in camel meat sausages by phenolic compounds and phenolic extracts. Animal Science Journal, 87(11), 1433–1442. doi: 10.1111/asj.12607
13. Rajauria, G., Draper, J., McDonnell, M., O’Doherty, J. V. (2016). Effect of dietary seaweed extracts, galactooligosac-charide and vitamin E supplementation on meat quality parameters in finisher pigs. Innovative Food Science and Emerging Technologies, 37(B), 269–275. doi: 10.1016/j.ifset.2016.09.007
14. Pop, R. M., Sabin, O., Suciu, Ș., Vesa, S. C., Socaci, S. A., Chedea, V. S. et al. (2020). Nigella sativa’s anti-inflammatory and antioxidative effects in experimental inflammation. Antioxidants, 9(10), Article 921. doi: 10.3390/antiox9100921
15. Dou, L., Jin, Y., Li, H., Liu, C., Yang, Z., Chen, X. et al. (2023). Effect of feeding system on muscle fiber composition, antioxidant capacity, and nutritional and organoleptic traits of goat meat. Animals, 13(1), Article 172. doi: 10.3390/ani13010172
16. Cunha, L. C. M., Monteiro, M. L. G., Lorenzo, J. M., Munekata, P. E. S., Muchenje, V., de Carvalho, F. A. L., Conte-Junior, C. A. (2018). Natural antioxidants in processing and storage stability of sheep and goat meat products. Food Research International, 111, 379–390. doi: 10.1016/j.foodres.2018.05.041
17. Serdaroğlu, M. (2023). Protein oxidation in meat products: Exploring the role of natural antioxidants in preservation and quality enhancement. Meat Technology, 64(2), 427–431. doi: 10.18485/meattech.2023.64.2.82
18. Alberts, A., Moldoveanu, E. -T., Niculescu, A. -G., Grumezescu, A. M. (2024). Nigella sativa : A comprehensive review of its therapeutic potential, pharmacological properties, and clinical applications. International Journal of Molecular Science, 25(24), Article 13410. doi: 10.3390/ijms252413410
19. Honikel, K. O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat Science, 49(4), 447–457. doi: 10.1016/S0309-1740(98)00034-5
20. Botsoglou, N. A., Fletouris, D. J., Papageorgiou, G. E., Vassilopoulos, V. N., Mantis, A. J., Trakatellis, A. G. (1994). Rapid, sensitive, and specific thiobarbituric acid method for measuring lipid peroxidation in animal tissue, food and feedstuff samples. Journal of Agricultural and Food Chemistry, 42(9), 1931–1937. doi: 10.1021/jf00045a019
21. Levine, R. L., Williams, J. A., Stadtman, E. P., Shacter, E. (1994). Carbonyl assays for determination of oxidatively modified proteins. Chapter in a book: Methods in enzymology. Academic press, 1994. doi: 10.1016/s0076-6879(94)33040-9
22. Sinha, A. K. (1972). Colorimetric assay of catalase. Analytical Biochemistry, 47(2), 389–394. doi: 10.1016/0003-2697(72)90132-7
23. Paoletti, F., Aldinucci, D., Mocali, A., Caparrini, A. (1986). A sensitive spectrophotometric method for the determination of superoxide dismutase activity in tissue extracts. Analytical Biochemistry, 154(2), 536–541. doi: 10.1016/0003-2697(86)90026-6
24. Chen, N., Liu, Y., Greiner, C. D., Holtzman, J. L. (2000). Physiologic concentrations of homocysteine inhibit the human plasma GSH peroxidase that reduces organic hydroperoxides. Journal of Laboratory and Clinical Medicine, 136(1), 58–65. doi: 10.1067/mlc.2000.107692
25. Purslow, P. P., Oiseth, S., Hughes, J., Warner, R. D. (2016) The structural basis of cooking loss in beef: Variations with temperature and ageing. Food Research International, 89(1), 739–748. doi: 10.1016/j.foodres.2016.09.010
26. Haghighi, H., Belmonte, A. M., Masino, F., Minelli, G., Lo Fiego, D., Pulvirenti, A. (2021). Effect of time and temperature on physicochemical and microbiological properties of sous vide chicken breast fillets. Applied Sciences, 111(7), Article 3189. doi: 10.3390/app11073189
27. Shen, Y., Guo, X., Li, X., Wang, W., Wang, S., Pan, J. et al. (2022). Effect of cooking temperatures on meat quality, protein carbonylation and protein cross-linking of beef packed in high oxygen atmosphere. LWT, 154, Article 112633. doi: 10.1016/j.lwt.2021.112633
28. Bahwan, M., Baba, W. N., Adiamo, O., Hassan, H. M., Roobab, U., Abayomi, O. O. et al. (2023). Exploring the impact of various cooking techniques on the physicochemical and quality characteristics of camel meat product. Animal Bioscience, 36(11), 1747–1756. doi: 10.5713/ab.22.0238
29. Djenane, D., Aboudaou, M., Djenane, F., García-Gonzalo, D., Pagán, R. (2020). Improvement of the shelf-life status of modified atmosphere packaged camel meat using nisin and olea europaea subsp. laperrinei leaf extract. Foods, 9(9), Ar ticle 1336. doi: 10.3390/foods9091336
30. Brigelius-Flohé, R., Flohé, L. (2020). Regulatory phenomena in the glutathione peroxidase superfamily. Antioxidants and Redox Signaling, 33(7), 498–516. doi: 10.1089/ars.2019.7905
31. Erickson, M. (2008). Lipid Oxidation of Muscle Foods. Chapter in a book: Food Lipids. CRC Press, 2008.
32. Gheisari, H. R., Eskandari, M. (2013). Effect of curing on camel meat lipid oxidation and enzymatic activity during refrigerated storage. Veterinarski Arhiv, 83(5), 551–562.
33. Abdel-Naeem, H. H. S., Sallam, K. I., Zaki, H. M. B. A. (2021). Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality and sensory attributes. Meat Science, 181, Article 108612. doi: 10.1016/j.meatsci.2021.108612
34. Min, B., Ahn, D. U. (2005). Mechanism of lipid peroxidation in meat and meat products – A review. Food Science and Biotechnology, 14(1), 152–163.
35. Amaral, A. B., Da Silva, M. V., Da Lannes, S. C. S. (2018). Lipid oxidation in meat: Mechanisms and protective factors. Annual Review of Food Science and Technology, 38(Suppl 1), 1–15. doi: 10.1590/fst.32518
36. Tang, S., Kerry, J. P., Sheehan, D., Buckley, D. J., Morrissey, P.A. (2001). Antioxidative effect of added tea catechins on susceptibility of cooked red meat, poultry and fish patties to lipid oxidation. Food Research International, 34(8), 651–657. doi: 10.1016/S0963-9969(00)00190-3
37. Faustman, C., Sun, Q., Mancini, R., Suman, S. P. (2010). Myoglobin and lipid oxidation interactions: Mechanistic bases and control. Meat Science, 86(1), 86–94. doi: 10.1016/j.meatsci.2010.04.025
38. Shimizu, H., Iwamoto, S. (2022). Problems of lipid oxidation in minced meat products for a ready-made meal during cooking, processing, and storage. Reviews in Agricultural Science, 10, 24–35. doi: 10.7831/ras.10.0_24
39. Cherif, M., Valenti, B., Abidi, S., Luciano, G., Mattioli, S., Pauselli, M. et al. (2018). Supplementation of Nigella sativa seeds to Barbarine lambs raised on low-or high-concentrate diets: Effects on meat fatty acid composition and oxidative stability. Meat Science, 139, 134–141. doi: 10.1016/j.meatsci.2018.01.022
40. Odhaib, K. J., Adeyemi, K. D., Sazili, A. Q. (2018). Carcass traits, fatty acid composition, gene expression, oxidative stability and quality attributes of different muscles in Dorper lambs fed Nigella sativa seeds, Rosmarinus officinalis leaves and their combination. Asian Australasian Journal of Animal Sciences, 31(8), 1345–1357. doi: 10.5713/ajas.17.0468
41. Rahman, M. H., Alam, M. S., Monir, M. M., Ahmed, K. (2021). Comprehensive effects of black cumin (Nigella sativa) and synthetic antioxidant on sensory and physicochemical quality of beef patties during refrigerant storage. Journal of Agriculture and Food Research, 4(10), Article 100145. doi: 10.1016/j.jafr.2021.100145
42. Asghar, M. U., Doğan, S. C., Wilk, M., Korczyński, M. (2022). Effect of dietary supplementation of black cumin seeds (Nigella sativa) on performance, carcass traits, and meat quality of Japanese quails (Coturnix coturnix japonica). Animals, 12(10), Article 1298. doi: 10.3390/ani12101298
43. Morshdy, A., Tolba Al Ashkar, A., Fikry A. Mahmoud, A. (2021). Improving the quality and shelf life of rabbit meat during chilled storage using lemongrass and black seed oils. Journal of Animal Health and Production, 9(s1), 56–61. doi: 10.17582/journal.jahp/2021/9.s1.56.61
44. AlGaradi, M. A., Sindi, R. A., Al-Gabrif, N., Abd El-Hack, M. E., Abdelnour, S. A. (2024). Effects of dietary thymoquinone inclusion on antioxidative, oxidative, proinflammatory responses, semen attributes and testicular changes in heat-stressed rabbit Bucks. Annals of Animal Science, 24(1), 109–119. doi: 10.2478/aoas-2023-0060
45. Fathi, M., Hosayni, M., Alizadeh, S., Zandi, R., Rahmati, S., Rezaee, V. (2023). Effets de la farine de graines de cumin noir (Nigella sativa) sur les performances de croissance, les indices sanguins et biochimiques, la qualité de la viande et la charge microbienne caecale chez les poulets de chair. Live-stock Science, 274, Article 105272. doi: 10.1016/j.livsci.2023.105272
46. Górska-Horczyczak, E., Brodowska-Trębacz, M., Hanula, M., Pogorzelska-Nowicka, E., Wierzbicka, A., Wojtasik-Kalinowska, I Półtorak, A. (2023). Influence of Nigella sativa L. oil addition on physicochemical and sensory properties of freezer-stored ground pork for pâté. Applied Sciences, 13(23), Article 12550. doi: 10.3390/app132312550
47. Muzolf-Panek, M., Kaczmarek, A., Tomaszewska-Gras, J., Cegielska-Radziejewska, R., Szablewski, T., Majcher, M. et al. (2020). A chemometric approach to oxidative stability and physicochemical quality of raw ground chicken meat affected by black seed and other spice extracts. Antioxidants, 9(9), Article 903. doi: 10.3390/antiox9090903
48. Zwolan, A., Pietrzak, D., Adamczak, L., Chmiel, M., Kalisz, S., Wirkowska-Wojdyła, M. et al. (2020). Effects of Nigella sativa L. seed extracts on lipid oxidation and color of chicken meatballs during refrigerated storage. LWT, 130(2), Article 109718. doi: 10.1016/j.lwt.2020.109718
49. Kurutas, E. B. (2016). The importance of antioxidants which play the role in cellular response against oxidative/nitrosative stress: Current state. Nutrition Journal, 15(1), Article 71. doi: 10.1186/s12937-016-0186-5
Рецензия
Для цитирования:
Rachchad Kh., Farh M., Khasmi M.E. Antioxidant effect of nigella oil on heated camel and rabbit meat. Теория и практика переработки мяса. 2025;10(2):120-127. https://doi.org/10.21323/2414-438X-2025-10-2-120-127
For citation:
Rachchad Kh., Farh M., Khasmi M.E. Antioxidant effect of nigella oil on heated camel and rabbit meat. Theory and practice of meat processing. 2025;10(2):120-127. https://doi.org/10.21323/2414-438X-2025-10-2-120-127