Preview

Theory and practice of meat processing

Advanced search

Methods of detecting the veterinary drugs residues and the ways of reducing their content in food products. Review

https://doi.org/10.21323/2414-438X-2025-10-2-109-119

Abstract

   The review was prepared in order to systematize the knowledge obtained in the recent years by the scientists from all over the world in the field of veterinary drugs application in the animal husbandry and the ways of management of their content in food products. It includes information on almost all currently known groups of antibiotics applied in animal husbandry, it considers the ways to reduce their amount in raw materials and / or the finished products, and describes the methods and procedures used to detect the residues of the veterinary drugs in raw materials and food products. It is not possible to run modern animal husbandry without the veterinary drugs. The global application of the veterinary drugs in animal husbandry exceeds 12 thousand tons, most of which are antibiotics for the infectious diseases treatment or prevention. Using the antibiotics in rearing the farm animals has led to the problem of their residues and / or metabolites in the raw materials and finished food products, which is why these food products cannot be considered safe for human consumption. The build-up of antibiotics in animal tissues depends on the group of the veterinary drug being used, and on the type of an animal. The content of residual amounts of some groups of antibiotics can be reduced by heat treatment of the meat. However, heat treatment can lead to the formation of new compounds that are potentially dangerous for the human health. Various analytical methods are used to determine the content of residual amounts of veterinary drugs in the food products, including enzyme immunoassay, chromatographic methods, biosensors and microbiological methods. The methods reviewed here for detecting the residual amounts of antibiotics in food products have their own advantages and disadvantages. In general, modern methods can currently detect the residues in food products of all known groups of antibiotics, used in animal husbandry, but it is necessary to keep on working on their improvement.

About the Authors

N. L. Vostrikova
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Natalia L. Vostrikova, Doctor of Technical Sciences, Head of the Center

Research Testing Center

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (413)



D. V. Khvostov
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Daniil V. Khvostov, Candidate of Technical Sciences, Researcher

Laboratory “Molecular Biology and Bioinformatics”

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (402)



D. A. Utyanov
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Dmitry A. Utyanov, Candidate of Technical Sciences, Researcher

Laboratory of Scientifically-Methodical Works and Control-Analytical Researches

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (428)



V. A. Zakharova
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Varvara A. Zakharova, Junior Researcher

Laboratory of Scientifically-Methodical Works and Control-Analytical Researches

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (428)



R. P. Bulgakov
https://www.meatjournal.ru/jour
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Roman P. Bulgakov, Senior Technician

Department of Consulting and Methodical Support

109316; 26, Talalikhin str.; Moscow

Tel.: +7–495–676–95–11 (428)



A. V. Zherdev
https://www.meatjournal.ru/jour
AN Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Anatoly V. Zherdev, Doctor of Chemical Sciences, Leading Researcher

Laboratory of Immunobiochemistry

119071; 33, Leninsky prospect; Moscow

Tel.: +7–495–954–28–04



References

1. (1952). Antibiotics in animal nutrition. Nature. 170, 868–869. doi: 10.1038/170868a0

2. Van Boeckel, T.P., Brower, C., Gilbert, M., Grenfell, B.T., Levin, S.A., Robinson, T.P. et al. (2015). Global trends in antimicrobial use in food animals. Proceedings of the National Academy of Sciences. 112(18), 5649–5654. doi: 10.1073/pnas.1503141112

3. Ikhimiukor, O.O., Odih, E.E., Donado-Godoy, P., Okeke, I.N. (2022). A bottom-up view of antimicrobial resistance transmission in developing countries. Nature Microbiology, 7(6), 757–765. doi: 10.1038/s41564-022-01124-w

4. Quintanilla, P., Doménech, E., Escriche, I., Beltrán, M.C., Molina, M.P. (2019). Food safety margin assessment of antibiotics: pasteurized goat’s milk and fresh cheese. Journal of Food Protection, 82(9), 1553–1559. doi: 10.4315/0362-028X.JFP-18-434

5. Sallam, K.I., Saad, F.S.S., Abdelkhalek, A. (2022). Health risk assessment of antimicrobial residues in sheep carcasses marketed in Kuwait. Food Chemistry, 383, Article 132401. doi: 10.1016/j.foodchem.2022.132401

6. Hassan, H.F., Saidy, L., Haddad, R., Hosri, C., Asmar, S., Jammoul, A. et al. (2021). Investigation of the effects of some processing conditions on the fate of oxytetracycline and tylosin antibiotics in the making of commonly consumed cheeses from the East Mediterranean. Veterinary World, 14(6), 1644–1649. doi: 10.14202/vetworld.2021.1644–1649

7. Yang, Y., Qiu, W., Li, Y., Liu, L. (2020). Antibiotic residues in poultry food in Fujian Province of China. Food Additives and Contaminants: Part B, 13(3), 177–184. doi: 10.1080/19393210.2020.1751309

8. Khattab, W.O., Elderea, H.B., Salem, E.G., Gomaa, N.F. (2010). Transmission of administered amoxicillin drug residues from laying chicken to their commercial eggs. Journal of the Egyptian Public Health Association, 85(5–6), 297–316.

9. Yamaguchi, T., Okihashi, M., Harada, K., Konishi, Y., Uchida, K., Do, M.H.N. et al. (2015). Antibiotic residue monitoring results for pork, chicken, and beef samples in Vietnam in 2012–2013. Journal of Agricultural and Food Chemistry, 63(21), 5141–5145. doi: 10.1021/jf505254y

10. Kabir, J., Umoh, V.J., Audu-okoh, E., Umoh, J.U., Kwaga, J.K.P. (2004). Veterinary drug use in poultry farms and determination of antimicrobial drug residues in commercial eggs and slaughtered chicken in Kaduna State, Nigeria. Food Control, 15(2), 99–105. doi: 10.1016/S0956-7135(03)00020-3

11. Virto, M., Santamarina-García, G., Amores, G., Hernández, I. (2022). Antibiotics in dairy production: Where is the problem? Dairy, 3(3), 541–564. doi: 10.3390/dairy3030039

12. Huong, L.Q., Hang, T.T.T., Ngoc, P.T., Tuat, C.V., Erickson, V.I., Padungtod, P. (2020). Pilot monitoring of antimicrobial residues in chicken and porkin Vietnam. Journal of Food Protection, 83(10), 1701–1706. doi: 10.4315/JFP-20-111

13. Duong, V.N., Paulsen, P., Suriyasathaporn, W., Smulders, F.J.M., Kyule, M.N., Baumann, M.P.O. et al. (2006). Preliminary analysis of tetracycline residues in marketed pork in Hanoi, Vietnam. Annals of the New York Academy of Sciences, 1081(1), 534–542. doi: 10.1196/annals.1373.081

14. Nhung, N.T., Van, N.T.B., Cuong, N.V., Duong, T.T.Q., Nhat, T.T., Hang, T.T.T. et al. (2018). Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. International Journal of Food Microbiology, 266, 301–309. doi: 10.1016/j.ijfoodmicro.2017.12.015

15. Rakotoharinome, M., Pognon, D., Randriamparany, T., Ming, J.C., Idoumbin, J.-P., Cardinale, E., Porphyre, V. (2014). Prevalence of antimicrobial residues in pork meat in Madagascar. Tropical Animal Health and Production, 46(1), 49–55. doi: 10.1007/s11250-013-0445-9

16. Zhang, Y., Lu, J., Yan, Y., Liu, J., Wang, M. (2021). Antibiotic residues in cattle and sheep meat and human exposure assessment in southern Xinjiang, China. Food Science and Nutrition, 9(11), 6152–6161. doi: 10.1002/fsn3.2568

17. Mbarga, M. J. A., Anyutoulou K. L. D., Podoprigora, I. V., Smolyakova L. A., Souadkia S., Ibrahim, K. et al. (2022). The public health issue of antibiotic residues in food and feed: Causes, consequences, and potential solutions. Veterinary World, 15(3), 662–671. doi: 10.14202/vetworld.2022.662-671

18. Cadmus, S., Palmer, S., Okker, M., Dale, J., Gover, K., Smith, N. et al. (2006). Molecular analysis of human and bovine tubercle bacilli from a local setting in Nigeria. Journal of Clinical Microbiology, 44(1), 29–34. doi: 10.1128/jcm.44.1.29-34.2006

19. National Research Council. (2005). Animal Health at the Crossroads: Preventing, Detecting, and Diagnosing Animal Diseases. Washington, DC: The National Academies Press, 2005. doi: 10.17226/11365

20. Hassan, M.M., El Zowalaty, M.E., Lundkvist, Å., Järhult, J.D., Nayem, R.K., Tanzin, A.Z. et al. (2021). Residual antimicrobial agents in food originating from animals. Trends in Food Science and Technology, 111, 141–150. doi: 10.1016/j.tifs.2021.01.075

21. Lateefat, H.M., Olaniyi, O.A., Misbahu, G., Raimi, O.M. (2022). A wake-up call: Determination of antibiotics residue level in raw meat in abattoir and selected slaughterhouses in five local government in Kano State, Nigeria. Journal of Veterinary Health Science, 3(1), 54–61. doi: 10.1101/2022.01.04.474991

22. Henson, S., Jaffee, S., Wang, S. (2023). New directions for tackling food safety risks in the informal sector of developing countries. Nairobi, Kenya: International Livestock Research Institute, 2023.

23. Marouf, H. A., Bazalou, M. S. (April 5–6, 2005). Detection of antibiotic residues in meat sold in Damietta governorate. The 4th International Scientific Conference. Mansoura University, Egypt, 2005.

24. Shaheen, H., Ahmed, A., Abdelrahman, H., Abdou, R. Kamel, A. (2022). Influence of simmering and frying on tetracycline residues detected in broiler chicken meat. Advances in Animal and Veterinary Science, 10(4), 725–730. doi: 10.17582/journal.aavs/2022/10.4.725.730

25. Nguyen, V., Li, M., Khan, M.A., Li, C., Zhou, G. (2013). Effect of cooking methods on tetracycline residues in pig meat. African Journal of Pharmacy and Pharmacology, 7(22), 1448–1454. doi: 10.5897/AJPP12.454

26. Silva, F.R.N., Pereira, A.D., Baptista, D.P., Pereira, M.U., Spisso, B.F., Gigante, M.L. et al. (2020). Monensin residues in the production of Minas Frescal cheese: Stability, effects on fermentation, fate and physicochemical characteristics of the cheese. Food Research International, 137, Article 109440. doi: 10.1016/j.foodres.2020.109440

27. Wu, M., Cheng, X., Wu, X., Qian, H., Wang, W. (2022). Effect of cooking methods on amphenicols and metabolites residues in livestock and poultry meat spiked tissues. Foods, 11(21), Article 3497. doi: 10.3390/foods11213497

28. Wali, M.K., Al Deri, A.H. (2022). Effect of thermal processing on antibacterial drug residue of tetracycline and sulfonamide in fresh beef meat and Iraqi processed meat. International Journal of Health Sciences, 6(S2), 6849–6856. doi: 10.53730/ijhs.v6nS2.6701

29. Planche, C., Chevolleau, S., Noguer-Meireles, M.-H., Jouanin, I., Mompelat, S., Ratel, J. et al. (2022). Fate of sulfonamides and tetracyclines in meat during pan cooking: Focus on the thermodecomposition of sulfamethoxazole. Molecules, 27(19), Article 6233. doi: 10.3390/molecules27196233

30. Baghani, A., Mesdaghinia, A., Rafieiyan, M., Dallal, M.M.S., Douraghi, M. (2019). Tetracycline and ciprofloxacin multiresidues in beef and chicken meat samples using indirect competitive ELISA. Journal of Immunoassay and Immunochemistry, 40(3), 328–342. doi: 10.1080/15321819.2019.1597735

31. Lorenzetti, A.S., Lista, A.G., Domini, C.E. (2019). Reverse ultrasound-assisted emulsification-microextraction of macrolides from chicken fat followed by electrophoretic determination. LWT-Food Science and Technology, 113, Article 108334. doi: 10.1016/j.lwt.2019.108334

32. Zhao, J., Liu, P., Yuan, H., Peng, Y., Hong, Q., Liu, M. (2016). Rapid detection of tetracycline residues in duck meat using surface enhanced Raman spectroscopy. Journal of Spectroscopy, 1, Article 1845237. doi: 10.1155/2016/1845237

33. Palisoc, S., De Leon, P.G., Alzona, A., Racines, L. Natividad, M. (2019). Highly sensitive determination of tetracycline in chicken meat and eggs using AuNP/ MWCNT-modified glassy carbon electrodes. Heliyon, 5(7), Article e02147. doi: 10.1016/j.heliyon.2019.e02147

34. Chen, T., Cheng, G., Ahmed, S., Wang, Y., Wang, X., Hao, H. et al. (2017). New methodologies in screening of antibiotic residues in animal-derived foods: Biosensors. Talanta, 175, 435–442. doi: 10.1016/j.talanta.2017.07.044

35. Shah, K., Maghsoudlou, P. (2016). Enzyme-linked immunosorbent assay (ELISA): The basics. British Journal of Hospital Medicine, 77(7), C98-C101. doi: 10.12968/hmed.2016.77.7.C98

36. He, T., Liu, J., Wang, J.P. (2021). Development of a dihydropteroate synthase-based fluorescence polarization assay for detection of sulfonamides and studying its recognition mechanism. Journal of Agricultural and Food Chemistry, 69(46), 13953–13963. doi: 10.1021/acs.jafc.1c05674

37. Wang, Z., Liang, X., Wen, K., Zhang, S., Li, C., Shen, J. (2015). A highly sensitive and class-specific fluorescence polarisation assay for sulphonamides based on dihydropteroate synthase. Biosensors and Bioelectronics, 70, 1–4. doi: 10.1016/j.bios.2015.03.016

38. Zherdev A. V., Zvereva E. A., Taranova N. A., Safenkova I. V., Vostrikova N. L., Dzantiev B. B. Immunochromatographic food control tools: New developments and practical prospects. Theory and Practice of Meat Processing. 2024, 9(4), 280–295. doi: 10.21323/2414-438X-2024-9-4-280-295

39. Wang, C., Li, X., Yu, F., Wang, Y., Ye, D., Hu, X. et al. (2021). Multiclass analysis of veterinary drugs in eggs using dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chemistry, 334, Article 127598. doi: 10.1016/j.foodchem.2020.127598

40. Wu, D., Du, D., Lin, Y. (2016). Recent progress on nanomaterial-based biosensors for veterinary drug residues in animal-derived food. TrAC Trends in Analytical Chemistry, 83(Part B), 95–101. doi: 10.1016/j.trac.2016.08.006

41. Bhalla, N., Jolly, P., Formisano, N., Estrela. P. (2016). Introduction to biosensors. Essays Biochemistry, 60(1), 1–8. doi: 10.1042/EBC20150001

42. Cervera-Chiner, L., Jiménez, Y., Montoya, Á., Juan-Borrás, M., Pascual, N., Arnau, A. et al. (2020). High fundamental frequency quartz crystal microbalance (HFF-QCMD) Immunosensor for detection of sulfathiazole in honey. Food Control, 115, Article 107296. doi: 10.1016/j.foodcont.2020.107296

43. Ahmed, S., Ning, J., Peng, D., Chen, T., Ahmad, I., Ali, A. Lei, Z. et al. (2020). Current advances in immunoassays for the detection of antibiotics residues: A review. Food and Agricultural Immunology, 31(1), 268–290. doi: 10.1080/09540105.2019.1707171

44. Majdinasab, M., Mishra, R.K., Tang, X., Marty, J.L. (2020). Detection of antibiotics in food: New achievements in the development of biosensors. TrAC Trends in Analytical Chemistry, 127, Article 115883. doi: 10.1016/j.trac.2020.115883

45. Yue, F., Li, F., Kong, Q., Guo, Y., Sun, X. (2021). Recent advances in aptamer-based sensors for aminoglycoside antibiotics detection and their applications. Science of the Total Environment, 762, Article 143129. doi: 10.1016/j.scitotenv.2020.143129

46. Xie, M., Zhao, F., Zhang Ya., Xiong, Yo., Han, Sh. (2022). Recent advances in aptamer-based optical and electrochemical biosensors for detection of pesticides and veterinary drugs. Food Control, 131, Article 108399. doi: 10.1016/j.foodcont.2021.108399

47. Mehlhorn, A., Rahimi, P., Joseph, Y. (2018). Aptamer-based biosensors for antibiotic detection : A Review. Biosensors, 8(2), Article 54. doi: 10.3390/bios8020054

48. Ashwin, H., Stead, S., Caldow, M., Sharman, M., Stark, J., de Rijk, A. et al. (2009). A rapid microbial inhibition-based screening strategy for fluoroquinolone and quinolone residues in foods of animal origin. Analytica Chimica Acta, 637(1–2), 241–246. doi: 10.1016/j.aca.2008.08.038

49. Appicciafuoco, B., Dragone, R., Frazzoli, C., Bolzoni, G., Mantovani, A., Ferrini, A.M. (2015). Microbial screening for quinolones residues in cow milk by bio-optical method. Journal of Pharmaceutical and Biomedical Analysis, 106, 179–185. doi: 10.1016/j.jpba.2014.11.037

50. Al-Mazeedi, H.M., Abbas, A.B., Alomirah, H.F., Al-Jouhar, W.Y., Al-Mufty, S.A., Ezzelregal, M.M. et al. (2010). Screening for tetracycline residues in food products of animal origin in the State of Kuwait using Charm II radio-immunoassay and LC/MS/MS methods. Food Additives and Contaminants: Part A, 27(3), 291–301. doi: 10.1080/19440040903331027

51. Zhang, Z., Wu, Yu., Li, X., Wang, Yi., Li, H. et al. (2017). Multiclass method for the determination of nitroimidazoles, nitrofurans, and chloramphenicol in chicken muscle and egg by dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chemistry, 217, 182–190. doi: 10.1016/j.foodchem.2016.08.097


Review

For citations:


Vostrikova N.L., Khvostov D.V., Utyanov D.A., Zakharova V.A., Bulgakov R.P., Zherdev A.V. Methods of detecting the veterinary drugs residues and the ways of reducing their content in food products. Review. Theory and practice of meat processing. 2025;10(2):109-119. https://doi.org/10.21323/2414-438X-2025-10-2-109-119

Views: 37


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)