Green processing technology of meat and meat products: A review
https://doi.org/10.21323/2414-438X-2025-10-1-32-44
Аннотация
Green processing technologies are revolutionizing the meat industry by addressing the environmental and health challenges associated with traditional meat processing methods. This review explores several novel green technologies, including high-pressure processing (HPP), cold plasma, ultrasound, pulsed electric field (PEF) processing, and fermentation. These technologies offer significant improvements in terms of energy efficiency, waste reduction, and reduction of chemical additives. This review examines their operational principles, current research findings, and emerging applications. Additionally, the review highlights the integration of these technologies, their environmental impact, economic feasibility, and regulatory landscape. The findings suggest that while green technologies hold substantial promise for enhancing sustainability in meat processing, further research and industry adoption are necessary to fully realize their potential.
Ключевые слова
Об авторе
A. S. El-tahlawyЕгипет
Ahmed S. El-tahlawy - PhD, Teaching Assistant of Meat Hygiene, Safety and Technology, Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University.
El-Zeraa str. 114, Zagazig, 44511, Egypt. Tel.: +20–127–361–64–80
Список литературы
1. Qu, B., Xiao, Z., Upadhyay, A., Luo, Y. (2024). Perspectives on sustainable food production system: Characteristics and green technologies. Journal of Agriculture and Food Research, 15, Article 100988. https://doi.org/10.1016/j.jafr.2024.100988
2. Corigliano, O., Algieri, A. (2024). A comprehensive investigation on energy consumptions, impacts, and challenges of the food industry. Energy Conversion and Management: X, 23, Article 100661. https://doi.org/10.1016/j.ecmx.2024.100661
3. McDonagh, M., O’Donovan, S., Moran, A., Ryan, L. (2024). An exploration of food sustainability practices in the food industry across Europe. Sustainability, 16(16), Article 7119. https://doi.org/10.3390/su16167119
4. Pathiraje, D., Carlin, J., Der, T., Wanasundara, J.P., Shand, P.J. (2023). Generating multi-functional pulse ingredients for processed meat products — scientific evaluation of infrared-treated lentils. Foods, 12(8), Article 1722. https://doi.org/10.3390/foods12081722
5. Jia, Z., Zhang, B., Sharma, A., Kim, N.S., Purohit, S.M., Green, M.M. et al. (2023). Revelation of the sciences of traditional foods. Food Control, 145, Article 109392. https://doi.org/10.1016/j.foodcont.2022.109392
6. Novais, C., Molina, A. K., Abreu, R. M. V., Santo-Buelga, C., Ferreira, I. C. F. R., Pereira, C. et al. (2022). Natural food colorants and preservatives: A review, a demand, and a challenge. Journal of Agricultural and Food Chemistry, 70(9), 2789–2805. https://doi.org/10.1021/acs.jafc.1c07533
7. Gómez, I., Janardhanan, R., Ibañez, F. C., Beriain, M. J. (2020). The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods, 9(10), Article 1416. https://doi.org/10.3390/foods9101416
8. Pinton, M. B., dos Santos, B. A., Lorenzo, J. M., Cichoski, A. J., Boeira, C. P., Campagnol, P. C. B. (2021). Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Current Opinion in Food Science, 40, 1–5. https://doi.org/10.1016/j.cofs.2020.03.011
9. Pinto, V. R. A., de Abreu Campos, R. F., Rocha, F., Emmendoerfer, M. L., Vidigal, M. C. T. R., da Rocha, S. J. S. S. Et al. (2021). Perceived healthiness of foods: A systematic review of qualitative studies. Future Foods, 4, Article 100056. https://doi.org/10.1016/j.fufo.2021.100056
10. Soro, A. B., Noore, S., Hannon, S., Whyte, P., Bolton, D. J., O’Donnell, C. et al. (2021). Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process. Food Packaging and Shelf Life, 29, Article 100722. https://doi.org/10.1016/j.fpsl.2021.100722
11. Picart-Palmade, L., Cunault, C., Chevalier-Lucia, D., Belleville, M.-P., Marchesseau, S. (2019). Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Frontiers in Nutrition, 5, Article 130. https://doi.org/10.3389/fnut.2018.00130
12. Nabi, B. G., Mukhtar, K., Arshad, R. N., Radicetti, E., Tedeschi, P., Shahbaz, M. U. et al. (2021). High-pressure processing for sustainable food supply. Sustainability, 13(24), Article 13908. https://doi.org/10.3390/su132413908
13. Ucar, Y., Ceylan, Z., Durmus, M., Tomar, O., Cetinkaya, T. (2021). Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science and Technology, 114, 355–371. https://doi.org/10.1016/j.tifs.2021.06.004
14. Alarcon-Rojo, A. D., Carrillo-Lopez, L. M., Reyes-Villagrana, R., Huerta-Jiménez, M., Garcia-Galicia, I. A. (2019). Ultrasound and meat quality: A review. Ultrasonics Sonochemistry, 55, 369–382. https://doi.org/10.1016/j.ultsonch.2018.09.016
15. Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I. et al. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science and Technology, 111, 43–54. https://doi.org/10.1016/j.tifs.2021.02.041
16. Augustin, M. A., Hartley, C. J., Maloney, G., Tyndall, S. (2024). Innovation in precision fermentation for food ingredients. Critical Reviews in Food Science and Nutrition, 64(18), 6218–6238. https://doi.org/10.1080/10408398.2023.2166014
17. Khan, N., Ray, R. L., Kassem, H. S., Hussain, S., Zhang, S., Khayyam, M. et al. (2021). Potential role of technology innovation in transformation of sustainable food systems: A review. Agriculture, 11(10), Article 984. https://doi.org/10.3390/agriculture11100984
18. Jiang, G., Ameer, K., Kim, H., Lee, E.-J., Ramachandraiah, K., Hong, G.-P. (2020). Strategies for sustainable substitution of livestock meat. Foods, 9(9), Article 1227. https://doi.org/10.3390/foods9091227
19. Fraqueza, M. J., Laranjo, M., Alves, S., Fernandes, M. H., Agulheiro-Santos, A. C., Fernandes, M. J. et al. (2020). Dry-cured meat products according to the smoking regime: Process optimization to control polycyclic aromatic hydrocarbons. Foods, 9(1), Article 91. https://doi.org/10.3390/foods9010091
20. Halagarda, M., Wójciak, K. M. (2022). Health and safety aspects of traditional European meat products. A review. Meat Science, 184, Article 108623. https://doi.org/10.1016/j.meatsci.2021.108623
21. Cardoso, P. da S., Fagundes, J. M., Couto, D. S., Pires, E. De M., Guimarães, C. E. D., Ribeiro, C. D. F. et al. (2020). From curing to smoking: Processes and techniques for the production of pastrami. Brazilian Journal of Development, 6(8), 61511–61520. https://doi.org/10.34117/bjdv6n8-538
22. Hassoun, A., Guðjónsdóttir, M., Prieto, M. A., Garcia-Oliveira, P., Simal-Gandara, J., Marini, F. et al. (2020). Application of novel techniques for monitoring quality changes in meat and fish products during traditional processing processes: Reconciling novelty and tradition. Processes, 8(8), Article 988. https://doi.org/10.3390/pr8080988
23. Molina, J. R. G., Frías-Celayeta, J. M., Bolton, D. J., Botinestean, C. (2024). A comprehensive review of cured meat products in the irish market: Opportunities for reformulation and processing. Foods, 13(5), Article 746. https://doi.org/10.3390/foods13050746
24. Munir, M. T., Mtimet, N., Guillier, L., Meurens, F., Fravalo, P., Federighi, M. et al. (2023). Physical treatments to control Clostridium botulinum hazards in food. Foods, 12(8), Article 1580. https://doi.org/10.3390/foods12081580
25. Deveci, G., Tek, N.A. (2024). N‐Nitrosamines: A potential hazard in processed meat products. Journal of the Science of Food and Agriculture, 104(5), 2551–2560. https://doi.org/10.1002/jsfa.13102
26. Xiao-Hui, G., Jing, W., Ye-Ling, Z., Ying, Z., Qiu-Jin, Z., Ling-Gao, L. et al. (2023). Mediated curing strategy: An overview of salt reduction for dry-cured meat products. Food Reviews International, 39(7), 4565–4580. https://doi.org/10.1080/87559129.2022.2029478
27. Das, A.K., Bhattacharya, D., Das, A., Nath, S., Bandyopadhyay, S., Nanda, P. K. et al. (2023). Current innovative approaches in reducing polycyclic aromatic hydrocarbons (PAHs) in processed meat and meat products. Chemical and Biological Technologies in Agriculture, 10(1), Article 109. https://doi.org/10.1186/s40538-023-00483-8
28. Nizio, E., Czwartkowski, K., Niedbała, G. (2023). Impact of smoking technology on the quality of food products: Absorption of polycyclic aromatic hydrocarbons (PAHs) by food products during smoking. Sustainability, 15(24), Article 16890. https://doi.org/10.3390/su152416890
29. Adeyeye, S. A. O., Ashaolu, T. J. (2022). Polycyclic aromatic hydrocarbons formation and mitigation in meat and meat products. Polycyclic Aromatic Compounds, 42(6), 3401–3411. https://doi.org/10.1080/10406638.2020.1866039
30. Bulanda, S., Janoszka, B. (2022). Consumption of thermally processed meat containing carcinogenic compounds (polycyclic aromatic hydrocarbons and heterocyclic aromatic amines) versus a risk of some cancers in humans and the possibility of reducing their formation by natural food additives — a literature review. International Journal of Environmental Research and Public Health, 19(8), Article 4781. https://doi.org/10.3390/ijerph19084781
31. Bamwesigye, D., Kupec, P., Chekuimo, G., Pavlis, J., Asamoah, O., Darkwah, S. A. et al. (2020). Charcoal and wood biomass utilization in Uganda: The socioeconomic and environmental dynamics and implications. Sustainability, 12(20), Article 8337. https://doi.org/10.3390/su12208337
32. Bensid, A., El Abed, N., Houicher, A., Regenstein, J. M., Özogul, F. (2022). Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food–a review. Critical Reviews in Food Science and Nutrition, 62(11), 2985–3001. https://doi.org/10.1080/10408398.2020.1862046
33. Sharma, H., Rajput, R. (2023). The science of food preservation: A comprehensive review of synthetic preservatives. Journal of Current Research in Food Science, 4(2), 25–29.
34. Font-i-Furnols, M. (2023). Meat consumption, sustainability and alternatives: An overview of motives and barriers. Foods, 12(11), Article 2144. https://doi.org/10.3390/foods12112144
35. Rodríguez Escobar, M. I., Cadena, E., Nhu, T. T., Cooreman-Algoed, M., De Smet, S., Dewulf, J. (2021). Analysis of the cultured meat production system in function of its environmental footprint: Current status, gaps and recommendations. Foods, 10(12), Article 2941. https://doi.org/10.3390/foods10122941
36. Teshome, E., Forsido, S. F., Rupasinghe, H. P. V., Olika Keyata, E. (2022). Potentials of natural preservatives to enhance food safety and shelf life: A review. The Scientific World Journal, 2022(1), Article 9901018. https://doi.org/10.1155/2022/9901018
37. Wojtasik-Kalinowska, I., Szpicer, A., Binkowska, W., Hanula, M., Marcinkowska-Lesiak, M., Poltorak, A. (2023). Effect of processing on volatile organic compounds formation of meat. Applied Sciences, 13(2), Article 705. https://doi.org/10.3390/app13020705
38. Dutta, K., Shityakov, S., Zhu, W., Khalifa, I. (2022). High-risk meat and fish cooking methods of polycyclic aromatic hydrocarbons formation and its avoidance strategies. Food Control, 142, Article 109253. https://doi.org/10.1016/j.foodcont.2022.109253
39. Giampieri, A., Ling-Chin, J., Ma, Z., Smallbone, A., Roskilly, A. (2020). A review of the current automotive manufacturing practice from an energy perspective. Applied Energy, 261, Article 114074. https://doi.org/10.1016/j.apenergy.2019.114074
40. Dai, B., Cao, Y., Zhou, X., Liu, S., Fu, R., Li, C. et al. (2024). Exergy, carbon footprint and cost lifecycle evaluation of cascade mechanical subcooling CO2 commercial refrigeration system in China. Journal of Cleaner Production, 434, Article 140186. https://doi.org/10.1016/j.jclepro.2023.140186
41. Chen, Y., Zhang, X., Ji, J., Zhang, C. (2024). Cold chain transportation energy conservation and emission reduction based on phase change materials under dual-carbon background: A review. Journal of Energy Storage, 86, Article 111258. https://doi.org/10.1016/j.est.2024.111258
42. Seibt, A. C. M. D., Nerhing, P., Pinton, M. B., Santos, S. P., Leães, Y. S. V., De Oliveira, F. D. C. et al. (2024). Green technologies applied to low-NaCl fresh sausages production: Impact on oxidative stability, color formation, microbiological properties, volatile compounds, and sensory profile. Meat Science, 209, Article 109418. https://doi.org/10.1016/j.meatsci.2023.109418
43. Boukouvalas, C., Kekes, T., Oikonomopoulou, V., Krokida, M. (2024). Life cycle assessment of energy production from solid waste valorization and wastewater purification: A case study of meat processing industry. Energies, 17(2), Article 487. https://doi.org/10.3390/en17020487
44. Inguglia, E. S., Song, Z., Kerry, J. P., O’Sullivan, M. G., Hamill, R. M. (2023). Addressing clean label trends in commercial meat processing: Strategies, challenges and insights from consumer perspectives. Foods, 12(10), Article 2062. https://doi.org/10.3390/foods12102062
45. Kumar, P., Abubakar, A. A., Verma, A. K., Umaraw, P., Adewale Ahmed, M., Mehta, N. et al. (2023). New insights in improving sustainability in meat production: Opportunities and challenges. Critical Reviews in Food Science and Nutrition, 63(33), 11830–11858. https://doi.org/10.1080/10408398.2022.2096562
46. Aydin, M., Degirmenci, T. (2024). The impact of clean energy consumption, green innovation, and technological diffusion on environmental sustainability: New evidence from load capacity curve hypothesis for 10 European Union countries. Sustainable Development, 32(3), 2358–2370. https://doi.org/10.1002/sd.2794
47. Li, Z., Yang, Q., Du, H., Wu, W. (2023). Advances of pulsed electric field for foodborne pathogen sterilization. Food Reviews International, 39(7), 3603–3619. https://doi.org/10.1080/87559129.2021.2012798
48. Lopes, S. J. S., S. Sant’Ana, A., Freire, L. (2023). Non-thermal emerging processing technologies: mitigation of microorganisms and mycotoxins, sensory and nutritional properties maintenance in clean label fruit juices. Food Research International, 168, Article 112727. https://doi.org/10.1016/j.foodres.2023.112727
49. Ashrafudoulla, Md., Ulrich, M. S. I., Toushik, S. H., Nahar, S., Roy, P. K., Mizan, F. R. et al. (2023). Challenges and opportunities of non-conventional technologies concerning food safety. World's Poultry Science Journal, 79(1), 3–26. https://doi.org/10.1080/00439339.2023.2163044
50. Liu, X., Xie, Y., Sheng, H. (2023). Green waste characteristics and sustainable recycling options. Resources, Environment and Sustainability, 11, Article 100098. https://doi.org/10.1016/j.resenv.2022.100098
51. Hamed, I., Jakobsen, A. N., Lerfall, J. (2022). Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 198–226. https://doi.org/10.1111/1541-4337.12870
52. Gavahian, M., Mathad, G. N., Pandiselvam, R., Lin, J., Sun, D.-W. (2021). Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends in Food Science and Technology, 115, 42–54. https://doi.org/10.1016/j.tifs.2021.06.018
53. Castro‐Muñoz, R., García‐Depraect, O., León‐Becerril, E., Cassano, A., Conidi, C., Fíla, V. (2021). Recovery of protein‐based compounds from meat by‐products by membrane‐assisted separations: A review. Journal of Chemical Technology and Biotechnology, 96(11), 3025–3042. https://doi.org/10.1002/jctb.6824
54. Barone, A. S., Matheus, J. R. V., de Souza, T. S. P., Moreira, R. F. A., Fai, A. E. C. (2021). Green‐based active packaging: Opportunities beyond COVID‐19, food applications, and perspectives in circular economy-A brief review. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4881–4905. https://doi.org/10.1111/1541-4337.12812
55. Carpentieri, S., Soltanipour, F., Ferrari, G., Pataro, G., Donsì, F. (2021). Emerging green techniques for the extraction of antioxidants from agri-food by-products as promising ingredients for the food industry. Antioxidants, 10(9), Article 1417. https://doi.org/10.3390/antiox10091417
56. Wu, L., Zhang, C., Long, Y., Chen, Q., Zhang, W., Liu, G. (2022). Food additives: From functions to analytical methods. Critical Reviews in Food Science and Nutrition, 62(30), 8497–8517. https://doi.org/10.1080/10408398.2021.1929823
57. Ahmed, S. F., Mofijur, M., Rafa, N., Chowdhury, A. T., Chowdhury, S., Nahrin, M. et al. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 204, Article 111967. https://doi.org/10.1016/j.envres.2021.111967
58. Albert, T., Braun, P. G., Saffaf, J., Wiacek, C. (2021). Physical methods for the decontamination of meat surfaces. Current Clinical Microbiology Reports, 8(2), 9–20. https://doi.org/10.1007/s40588-021-00156-w
59. Bradu, P., Biswas, A., Nair, C., Sreevalsakumar, S., Patil, M., Kannampuzha, S. et al. (2023). Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environmental Science and Pollution Research, 30(60), 124488–124519. https://doi.org/10.1007/s11356-022-20024-4
60. Galanakis, C. M. (2024). The future of food. Foods, 13(4), Article 506. https://doi.org/10.3390/foods13040506
61. Keyata, E., Bikila, A. (2024). Effect of high-pressure processing on nutritional composition, microbial safety, shelf life and sensory properties of perishable food products: A review. Journal of Agriculture, Food and Natural Resources, 2(1), 69–78. https://doi.org/10.20372/afnr.v2i1.659
62. Sehrawat, R., Kaur,B. P., Nema, P. K., Tewari, S., Kumar, L. (2021). Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Science and Biotechnology, 30(1), 19–35. https://doi.org/10.1007/s10068-020-00831-6
63. Gokul Nath, K., Pandiselvam, R., Sunil, C. K. (2023). Highpressure processing: Effect on textural properties of food-A review. Journal of Food Engineering, 351, Article 111521. https://doi.org/10.1016/j.jfoodeng.2023.111521
64. Inanoglu, S., Barbosa‐Cánovas, G. V., Sablani, S. S., Zhu, M. J., Keener, L., Tang, J. (2022). High‐pressure pasteurization oflow‐acid chilled ready‐to‐eat food. Comprehensive Reviews in Food Science and Food Safety, 21(6), 4939–4970. https://doi.org/10.1111/1541-4337.13058
65. Silva, F. V. M., Evelyn, E. (2023). Pasteurization of food and beverages by high pressure processing (HPP) at room temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and other microbial pathogens. Applied Sciences, 13(2), Article 1193. https://doi.org/10.3390/app13021193
66. Bernardo, Y. A. de A., do Rosario, D. K. A., Conte-Junior, C. A. (2023). Principles, application, and gaps of high-intensity ultrasound and high-pressure processing to improve meat texture. Foods, 12(3), Article 476. https://doi.org/10.3390/foods12030476
67. Chuang, S., Sheen, S. (2022). High pressure processing of raw meat with essential oils-microbial survival, meat quality, and models: A review. Food Control, 132, Article 108529. https://doi.org/10.1016/j.foodcont.2021.108529
68. de Souza, V. R., Popović, V., Bissonnette, S., Ros, I., Mats, L., Duizer, L. et al. (2020). Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science and Emerging Technologies, 64, Article 102398. https://doi.org/10.1016/j.ifset.2020.102398
69. Varilla, C., Marcone, M., Annor, G. A. (2020). Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods, 9(10), Article 1435. https://doi.org/10.3390/foods9101435
70. Misra, N. N., Yadav, B., Roopesh, M. S., Jo, C. (2019). Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106–120. https://doi.org/10.1111/1541–4337.12398
71. Abdel-Naeem, H. H. S., Ebaid, E. M. S. M., Khalel, K. H. M., Imre, K., Morar, A., Herman, V. et al. (2022). Decontamination of chicken meat using dielectric barrier discharge cold plasma technology: The effect on microbial quality, physicochemical properties, topographical structure, and sensory attributes. LWT, 165, Article 113739. https://doi.org/10.1016/j.lwt.2022.113739
72. Yepez, X., Illera, A. E., Baykara, H., Keener, K. (2022). Recent advances and potential applications of atmospheric pressure cold plasma technology for sustainable food processing. Foods, 11(13), Article 1833. https://doi.org/10.3390/foods11131833
73. Pankaj, S. K., Wan, Z., Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), Article 4. https://doi.org/10.3390/foods7010004
74. Chizoba Ekezie, F.-G., Sun, D.-W., Cheng, J.-H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science and Technology, 69, 46–58. https://doi.org/10.1016/j.tifs.2017.08.007
75. Gallo, M., Ferrara, L., Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Foods, 7(10), Article 164. https://doi.org/10.3390/foods7100164
76. Peña-Gonzalez, E., Alarcon-Rojo, A. D., Garcia-Galicia, I., Carrillo-Lopez, L., Huerta-Jimenez, M. (2019). Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. Ultrasonics Sonochemistry, 53, 134–141. https://doi.org/10.1016/j.ultsonch.2018.12.045
77. Gonzalez-Gonzalez, L., Alarcon-Rojo, A. D., Carrillo-Lopez, L. M., Garcia-Galicia, I. A., Huerta-Jimenez, M., Paniwnyk, L. (2020). Does ultrasound equally improve the quality of beef? An insight into longissimus lumborum, infraspinatus and cleidooccipitalis. Meat Science, 160, Article 107963. https://doi.org/10.1016/j.meatsci.2019.107963
78. Singla, M., Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, Article 105506. https://doi.org/10.1016/j.ultsonch.2021.105506
79. Al‐Hilphy, A. R., Al‐Temimi, A. B., Al Rubaiy, H. H. M., Anand, U., Delgado‐Pando, G., Lakhssassi, N. (2020). Ultrasound applications in poultry meat processing: A systematic review. Journal of Food Science, 85(5), 1386–1396. https://doi.org/10.1111/1750-3841.15135
80. Bariya, A. R., Rathod, N. B., Patel, A. S., Nayak, J. K. B., Ranveer, R. C., Hashem, A. et al. (2023). Recent developments in ultrasound approach for preservation of animal origin foods. Ultrasonics Sonochemistry, 101, Article 106676. https://doi.org/10.1016/j.ultsonch.2023.106676
81. Bhat, Z. F., Morton, J. D., Mason, S. L., Bekhit, A. E. A. (2018). Applied and emerging methods for meat tenderization: A comparative perspective. Comprehensive Reviews in Food Science and Food Safety, 17(4), 841–859. https://doi.org/10.1111/1541-4337.12356
82. Vanga, S. K., Wang, J., Jayaram, S., Raghavan, V. (2021). Effects of pulsed electric fields and ultrasound processing on proteins and enzymes: A review. Processes, 9(4), Article 722. https://doi.org/10.3390/pr9040722
83. Rebezov, M., Chughtai, M.F.J., Mehmood, T., Khaliq, A., Tanweer, S., Semenova, A. et al. (2021). Novel techniques for microbiological safety in meat and fish industries. Applied Sciences, 12(1), Article 319. https://doi.org/10.3390/app12010319
84. Gómez, B., Munekata, P. E. S., Gavahian, M., Barba, F. J., Martí-Quijal, F. J., Bolumar, T. et al. (2019). Application of pulsed electric fields in meat and fish processing industries: An overview. Food Research International, 123, 95–105. https://doi.org/10.1016/j.foodres.2019.04.047
85. Kantono, K., Hamid, N., Chadha, D., Ma, Q., Oey, I., Farouk, M. M. (2021). Pulsed electric field (PEF) processing of chilled and frozen-thawed lamb meat cuts: Relationships between sensory characteristics and chemical composition of meat. Foods, 10(5), Article 1148. https://doi.org/10.3390/foods10051148
86. Naliyadhara, N., Kumar, A., Girisa, S., Daimary, U. D., Hegde, M., Kunnumakkara, A. B. (2022). Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends in Food Science and Technology, 122, 238–255. https://doi.org/10.1016/j.tifs.2022.02.019
87. Zhang, H., Tikekar, R. V., Ding, Q., Gilbert, A. R., Wimsatt, S. T. (2020). Inactivation of foodborne pathogens by the synergistic combinations of food processing technologies and food‐grade compounds. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2110–2138. https://doi.org/10.1111/1541-4337.12582
88. Aaliya, B., Valiyapeediyekkal Sunooj, K., Navaf, M., Parambil Akhila, P., Sudheesh, C., Ahmad Mir, S. et al. (2021). Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and nonthermal processing techniques. Food Research International, 147, Article 110514. https://doi.org/10.1016/j.foodres.2021.110514
89. Rathod, N. B., Phadke, G. G., Tabanelli, G., Mane, A., Ranveer, R. C., Pagarkar, A. et al. (2021). Recent advances in biopreservatives impacts of lactic acid bacteria and their metabolites on aquatic food products. Food Bioscience, 44, Article 101440. https://doi.org/10.1016/j.fbio.2021.101440
90. Kaveh, S., Hashemi, S. M. B., Abedi, E., Amiri, M. J., Conte, F. L. (2023). Bio-preservation of meat and fermented meat products by lactic acid bacteria strains and their antibacterial metabolites. Sustainability, 15(13), Article 10154. https://doi.org/10.3390/su151310154
91. Amiri, S., Motalebi Moghanjougi, Z., Rezazadeh Bari, M., Mousavi Khaneghah, A. (2021). Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science, 33(SP1), 55–68. https://doi.org/10.15586/ijfs.v33iSP1.2045
92. Ursachi, C.Ș., Perța-Crișan, S., Munteanu, F.-D. (2020). Strategies to improve meat products’ quality. Foods, 9(12), Article 1883. https://doi.org/10.3390/foods9121883
93. Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M. et al. (2020). Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 9(9), Article 553. https://doi.org/10.3390/antibiotics9090553
94. Wang, J., Chen, J., Sun, Y., He, J., Zhou, C., Xia, Q. et al. (2023). Ultraviolet-radiation technology for preservation of meat and meat products: Recent advances and future trends. Food Control, 148, Article 109684. https://doi.org/10.1016/j.foodcont.2023.109684
95. Indiarto, R., Irawan, A. N., Subroto, E. (2023). Meat irradiation: A comprehensive review of its impact on food quality and safety. Foods, 12(9), Article 1845. https://doi.org/10.3390/foods12091845
96. Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K.-H., Bhardwaj, N. (2021). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal, 417, Article 128084. https://doi.org/10.1016/j.cej.2020.128084
97. Balatsas-Lekkas, A., Arvola, A., Kotilainen, H., Meneses, N., Pennanen, K. (2020). Effect of labelling fresh cultivated blueberry products with information about irradiation technologies and related benefits on Finnish, German, and Spanish consumers’ product acceptance. Food Control, 118, Article 107387. https://doi.org/10.1016/j.foodcont.2020.107387
98. D'Souza, C., Apaolaza, V., Hartmann, P., Brouwer, A. R., Nguyen, N. (2021). Consumer acceptance of irradiated food and information disclosure–A retail imperative. Journal of Retailing and Consumer Services, 63, Article 102699. https://doi.org/10.1016/j.jretconser.2021.102699
99. Rowan, N. J. (2023). Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? Science of the Total Environment, 874, Article 162380. https://doi.org/10.1016/j.scitotenv.2023.162380
100. Baggio, A., Marino, M., Innocente, N., Celotto, M., Maifreni, M. (2020). Antimicrobial effect of oxidative technologies in food processing: An overview. European Food Research and Technology, 246(4), 669–692. https://doi.org/10.1007/s00217-020-03447-6
101. Franco-Vega, A., Reyes-Jurado, F., González-Albarrán, D., Ramírez-Corona, N., Palou, E., López-Malo, A. (2021). Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Engineering Reviews, 13, 741–768. https://doi.org/10.1007/s12393-021-09280-1
102. Roobab, U., Chacha, J. S., Abida, A., Rashid, S., Muhammad Madni, G., Lorenzo, J. M. et al. (2022). Emerging trends for nonthermal decontamination of raw and processed meat: Ozonation, high-hydrostatic pressure and cold plasma. Foods, 11(15), Article 2173. https://doi.org/10.3390/foods11152173
103. Nema, P. K., Sehrawat, R., Ravichandran, C., Kaur, B. P., Kumar, A., Tarafdar, A. (2022). Inactivating food microbes by high‐pressure processing and combined nonthermal and thermal treatment: A review. Journal of Food Quality, 2022(1), Article 5797843. https://doi.org/10.1155/2022/5797843
104. Niu, D., Zeng, X.-A., Ren, E.-F., Xu, F.-Y., Li, J., Wang, M.-S. et al. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, Article 109715. https://doi.org/10.1016/j.foodres.2020.109715
105. Khadhraoui, B., Ummat, V., Tiwari, B. K., Fabiano-Tixier, A., Chemat, F. (2021). Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrasonics Sonochemistry, 76, Article 105625. https://doi.org/10.1016/j.ultsonch.2021.105625
106. Katsaros, G., Taoukis, P. (2021). Microbial control by high pressure processing for shelf-life extension of packed meat productsin the cold chain: Modeling and case studies. Applied Sciences, 11(3), Article 1317. https://doi.org/10.3390/app11031317
107. Li,R., Zhu, H., Chen, Y., Zhou, G., Li, C., Ye, K. (2022). Cold plasmas combined with Ar-based MAP for meatball products: Influence on microbiological shelflife and quality attributes. LWT, 159, Article 113137. https://doi.org/10.1016/j.lwt.2022.113137
108. Ulbin-Figlewicz, N., Brychcy, E., Jarmoluk, A. (2015). Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. Journal of Food Science and Technology, 52, 1228–1232. https://doi.org/10.1007/s13197-013-1108-6
109. Valenzuela, C., Garcia‐Galicia, I. A., Paniwnyk, L., Alarcon-Rojo, A. D. (2021). Physicochemical characteristics and shelf life of beef treated with high‐intensity ultrasound. Journal of Food Processing and Preservation, 45(4), Article e15350. https://doi.org/10.1111/jfpp.15350
110. Aşık-Canbaz, E., Çömlekçi, S., Can Seydim, A. (2022). Effect of moderate intensity pulsed electric field on shelf-life of chicken breast meat. British Poultry Science, 63(5), 641–649. https://doi.org/10.1080/00071668.2022.2051431
111. Olaoye, O. A., Onilude, A. A. (2010). Investigation on the potential application of biological agents in the extension of shelf life of fresh beef in Nigeria. World Journal of Microbiology and Biotechnology, 26(8), 1445–1454. https://doi.org/10.1007/s11274-010-0319-5
112. Mohamed, E. F. E., Hafez, A. E.-S. E., Seadawy, H. G., Elrefai, M. F. M., Abdallah, K., Bayomi, R. M. et al. (2023). Irradiation as a promising technology to improve bacteriological and physicochemical quality of fish. Microorganisms, 11(5), Article 1105. https://doi.org/10.3390/microorganisms11051105
113. Pereira, R. N., Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936–1943. https://doi.org/10.1016/j.foodres.2009.09.013
114. Zhang, W., Naveena, B. M., Jo, C., Sakata, R., Zhou, G., Banerjee, R. et al. (2017). Technological demands of meat processing–An Asian perspective. Meat Science, 132, 35–44. https://doi.org/10.1016/j.meatsci.2017.05.008
115. Witrowa-Rajchert, D., Wiktor, A., Sledz, M., Nowacka, M. (2014). Selected emerging technologies to enhance the drying process: A review. Drying Technology, 32(11), 1386–1396. https://doi.org/10.1080/07373937.2014.903412
116. Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S., Ulgiati, S. (2018). Life cycle assessment and water footprint of hydrogen production methods: From conventional to emerging technologies. Environments, 5(2), Article 24. https://doi.org/10.3390/environments5020024
117. Sampedro, F., McAloon, A., Yee, W., Fan, X., Geveke, D. J. (2014). Cost analysis and environmental impact of pulsed electric fields and high pressure processing in comparison with thermal pasteurization. Food and Bioprocess Technology, 7(7), 1928–1937. https://doi.org/10.1007/s11947-014-1298-6
118. Yin, Y., Xu, H., Zhu, Y., Zhuang, J., Ma, R., Cui, D. et al. (2023). Recent progress in applications of atmospheric pressure plasma for water organic contaminants’ degradation. Applied Sciences, 13(23), Article 12631. https://doi.org/10.3390/app132312631
119. Ajila, C. M., Brar, S. K., Verma, M., Prasada Rao, U. J. S. (2012). Sustainable solutions for agro processing waste management: An overview. Chapter in a book: Environmental protection strategies for sustainable development. Strategies for Sustainability. Springer, Dordrecht. 2012. https://doi.org/10.1007/978-94-007-1591-2_3
120. Javourez, U., O’donohue, M., Hamelin, L. (2021). Wasteto-nutrition: A review of current and emerging conversion pathways. Biotechnology Advances, 53, Article 107857. https://doi.org/10.1016/j.biotechadv.2021.107857
121. Sharma, P., Gaur, V. K., Sirohi, R., Varjani, S., Kim, S. H., Wong, J. W. C. (2021). Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology, 325, Article 124684. https://doi.org/10.1016/j.biortech.2021.124684
122. Aguirre-Garcia, Y.L.,Nery-Flores, S.D.,Campos-Muzquiz, L. G., Flores-Gallegos, A. C., Palomo-Ligas, L., Ascacio-Valdés, J. A. et al. (2024). Lactic acid fermentation in the food industry and bio-preservation of food. Fermentation, 10(3), Article 168. https://doi.org/10.3390/fermentation10030168
123. Zou, Y., Wang, L., Cai, P., Li, P., Zhang, M., Sun, Z. et al. (2017). Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash. International Journal of Biological Macromolecules, 105, 1602–1610. https://doi.org/10.1016/j.ijbiomac.2017.03.011
124. Ikram, M., Ferasso, M., Sroufe, R., Zhang, Q. (2021). Assessing green technology indicators for cleaner production and sustainable investments in a developing country context. Journal of Cleaner Production, 322, Article 129090. https://doi.org/10.1016/j.jclepro.2021.129090
125. Chakka, A. K., Sriraksha, M. S., Ravishankar, C. N. (2021). Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. LWT, 151, Article 112140. https://doi.org/10.1016/j.lwt.2021.112140
126. Mona, S., Kumar, S. S., Kumar, V., Parveen, K., Saini, N., Deepak, B. et al. (2020). Green technology for sustainable biohydrogen production (waste to energy): A review. Science of the Total Environment, 728, Article 138481. https://doi.org/10.1016/j.scitotenv.2020.138481
127. Muñoz, I., de Sousa, D. A. B., Guardia, M. D., Rodriguez, C. J., Nunes, M. L., Oliveira, H. et al. (2022). Comparison of different technologies (conventional thermal processing, radiofrequency heating and high-pressure processing) in combination with thermal solar energy for high quality and sustainable fish soup pasteurization. Food and Bioprocess Technology, 15(4), 795–805. https://doi.org/10.1007/s11947-022-02782-8
128. Houška, M., Silva, F. V. M., Evelyn, Buckow, R., Terefe, N.S., Tonello, C. (2022). High pressure processing applications in plant foods. Foods, 11(2), Article 223. https://doi.org/10.3390/foods11020223
129. Andreani, G., Sogari, G., Marti, A., Froldi, F., Dagevos, H., Martini, D. (2023). Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients, 15(2), Article 452. https://doi.org/10.3390/nu15020452
130. de Araújo, P. D., Araújo, W. M. C., Patarata, L., Fraqueza, M. J. (2022). Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. Meat Science, 193, Article 108952. https://doi.org/10.1016/j.meatsci.2022.108952
131. Young, E., Mirosa, M., Bremer, P. (2020). A systematic review of consumer perceptions of smart packaging technologies for food. Frontiers in Sustainable Food Systems, 4, Article 63. https://doi.org/10.3389/fsufs.2020.00063
132. Boz, Z., Korhonen, V., Koelsch Sand, C. (2020). Consumer considerations for the implementation of sustainable packaging: A review. Sustainability, 12(6) Article 2192. https://doi.org/10.3390/su12062192
133. Sievert, K., Lawrence, M., Parker, C., Baker, P. (2021). Understanding the political challenge of red and processed meat reduction for healthy and sustainable food systems: A narrative review of the literature. International Journal of Health Policy and Management, 10(12), Article 793. https://doi.org/10.34172/ijhpm.2020.238
134. Huang, H.-W., Hsu, C.-P., Wang, C.-Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1–13. https://doi.org/10.1016/j.jfda.2019.10.002
135. Meijer, G. W., Lähteenmäki, L., Stadler, R. H., Weiss, J. (2021). Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Critical Reviews in Food Science and Nutrition, 61(1), 97–115. https://doi.org/10.1080/10408398.2020.1718597
136. Roh, T., Noh, J., Oh, Y., Park, K.-S. (2022). Structural relation-ships of a firm's green strategies for environmental performance: The roles of green supply chain management and green marketing innovation. Journal of Cleaner Production, 356, Article 131877. https://doi.org/10.1016/j.jclepro.2022.131877
137. Kubo, M. T., Baicu, A., Erdogdu, F., Poças, M. F., Silva, C. L., Simpson, R. et al. (2023). Thermal processing of food: Challenges, innovations and opportunities. A position paper. Food Reviews International, 39(6), 3344–3369. https://doi.org/10.1080/87559129.2021.2012789
138. Charlebois, S., Juhasz, M., Music, J., Vézeau, J. (2021). A review of Canadian and international food safety systems: Issues and recommendations for the future. Comprehensive Reviews in Food Science and Food Safety, 20(5), 5043–5066. https://doi.org/10.1111/1541-4337.12816
139. Manning, L. (2016). Food fraud: Policy and food chain. Current Opinion in Food Science, 10, 16–21. https://doi.org/10.1016/j.cofs.2016.07.001
Рецензия
Для цитирования:
El-tahlawy A.S. Green processing technology of meat and meat products: A review. Теория и практика переработки мяса. 2025;10(1):32-44. https://doi.org/10.21323/2414-438X-2025-10-1-32-44
For citation:
El-tahlawy A.S. Green processing technology of meat and meat products: A review. Theory and practice of meat processing. 2025;10(1):32-44. https://doi.org/10.21323/2414-438X-2025-10-1-32-44