Preview

Theory and practice of meat processing

Advanced search

Green processing technology of meat and meat products: A review

https://doi.org/10.21323/2414-438X-2025-10-1-32-44

Abstract

Green processing technologies are revolutionizing the meat industry by addressing the environmental and health challenges associated with traditional meat processing methods. This review explores several novel green technologies, including high-pressure processing (HPP), cold plasma, ultrasound, pulsed electric field (PEF) processing, and fermentation. These technologies offer significant improvements in terms of energy efficiency, waste reduction, and reduction of chemical additives. This review examines their operational principles, current research findings, and emerging applications. Additionally, the review highlights the integration of these technologies, their environmental impact, economic feasibility, and regulatory landscape. The findings suggest that while green technologies hold substantial promise for enhancing sustainability in meat processing, further research and industry adoption are necessary to fully realize their potential.

About the Author

A. S. El-tahlawy
Zagazig University
Egypt

Ahmed S. El-tahlawy - PhD, Teaching Assistant of Meat Hygiene, Safety and Technology, Food Hygiene, Safety, and Technology Department, Faculty of Veterinary Medicine, Zagazig University.

El-Zeraa str. 114, Zagazig, 44511, Egypt. Tel.: +20–127–361–64–80



References

1. Qu, B., Xiao, Z., Upadhyay, A., Luo, Y. (2024). Perspectives on sustainable food production system: Characteristics and green technologies. Journal of Agriculture and Food Research, 15, Article 100988. https://doi.org/10.1016/j.jafr.2024.100988

2. Corigliano, O., Algieri, A. (2024). A comprehensive investigation on energy consumptions, impacts, and challenges of the food industry. Energy Conversion and Management: X, 23, Article 100661. https://doi.org/10.1016/j.ecmx.2024.100661

3. McDonagh, M., O’Donovan, S., Moran, A., Ryan, L. (2024). An exploration of food sustainability practices in the food industry across Europe. Sustainability, 16(16), Article 7119. https://doi.org/10.3390/su16167119

4. Pathiraje, D., Carlin, J., Der, T., Wanasundara, J.P., Shand, P.J. (2023). Generating multi-functional pulse ingredients for processed meat products — scientific evaluation of infrared-treated lentils. Foods, 12(8), Article 1722. https://doi.org/10.3390/foods12081722

5. Jia, Z., Zhang, B., Sharma, A., Kim, N.S., Purohit, S.M., Green, M.M. et al. (2023). Revelation of the sciences of traditional foods. Food Control, 145, Article 109392. https://doi.org/10.1016/j.foodcont.2022.109392

6. Novais, C., Molina, A. K., Abreu, R. M. V., Santo-Buelga, C., Ferreira, I. C. F. R., Pereira, C. et al. (2022). Natural food colorants and preservatives: A review, a demand, and a challenge. Journal of Agricultural and Food Chemistry, 70(9), 2789–2805. https://doi.org/10.1021/acs.jafc.1c07533

7. Gómez, I., Janardhanan, R., Ibañez, F. C., Beriain, M. J. (2020). The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods, 9(10), Article 1416. https://doi.org/10.3390/foods9101416

8. Pinton, M. B., dos Santos, B. A., Lorenzo, J. M., Cichoski, A. J., Boeira, C. P., Campagnol, P. C. B. (2021). Green technologies as a strategy to reduce NaCl and phosphate in meat products: An overview. Current Opinion in Food Science, 40, 1–5. https://doi.org/10.1016/j.cofs.2020.03.011

9. Pinto, V. R. A., de Abreu Campos, R. F., Rocha, F., Emmendoerfer, M. L., Vidigal, M. C. T. R., da Rocha, S. J. S. S. Et al. (2021). Perceived healthiness of foods: A systematic review of qualitative studies. Future Foods, 4, Article 100056. https://doi.org/10.1016/j.fufo.2021.100056

10. Soro, A. B., Noore, S., Hannon, S., Whyte, P., Bolton, D. J., O’Donnell, C. et al. (2021). Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process. Food Packaging and Shelf Life, 29, Article 100722. https://doi.org/10.1016/j.fpsl.2021.100722

11. Picart-Palmade, L., Cunault, C., Chevalier-Lucia, D., Belleville, M.-P., Marchesseau, S. (2019). Potentialities and limits of some non-thermal technologies to improve sustainability of food processing. Frontiers in Nutrition, 5, Article 130. https://doi.org/10.3389/fnut.2018.00130

12. Nabi, B. G., Mukhtar, K., Arshad, R. N., Radicetti, E., Tedeschi, P., Shahbaz, M. U. et al. (2021). High-pressure processing for sustainable food supply. Sustainability, 13(24), Article 13908. https://doi.org/10.3390/su132413908

13. Ucar, Y., Ceylan, Z., Durmus, M., Tomar, O., Cetinkaya, T. (2021). Application of cold plasma technology in the food industry and its combination with other emerging technologies. Trends in Food Science and Technology, 114, 355–371. https://doi.org/10.1016/j.tifs.2021.06.004

14. Alarcon-Rojo, A. D., Carrillo-Lopez, L. M., Reyes-Villagrana, R., Huerta-Jiménez, M., Garcia-Galicia, I. A. (2019). Ultrasound and meat quality: A review. Ultrasonics Sonochemistry, 55, 369–382. https://doi.org/10.1016/j.ultsonch.2018.09.016

15. Arshad, R. N., Abdul-Malek, Z., Roobab, U., Munir, M. A., Naderipour, A., Qureshi, M. I. et al. (2021). Pulsed electric field: A potential alternative towards a sustainable food processing. Trends in Food Science and Technology, 111, 43–54. https://doi.org/10.1016/j.tifs.2021.02.041

16. Augustin, M. A., Hartley, C. J., Maloney, G., Tyndall, S. (2024). Innovation in precision fermentation for food ingredients. Critical Reviews in Food Science and Nutrition, 64(18), 6218–6238. https://doi.org/10.1080/10408398.2023.2166014

17. Khan, N., Ray, R. L., Kassem, H. S., Hussain, S., Zhang, S., Khayyam, M. et al. (2021). Potential role of technology innovation in transformation of sustainable food systems: A review. Agriculture, 11(10), Article 984. https://doi.org/10.3390/agriculture11100984

18. Jiang, G., Ameer, K., Kim, H., Lee, E.-J., Ramachandraiah, K., Hong, G.-P. (2020). Strategies for sustainable substitution of livestock meat. Foods, 9(9), Article 1227. https://doi.org/10.3390/foods9091227

19. Fraqueza, M. J., Laranjo, M., Alves, S., Fernandes, M. H., Agulheiro-Santos, A. C., Fernandes, M. J. et al. (2020). Dry-cured meat products according to the smoking regime: Process optimization to control polycyclic aromatic hydrocarbons. Foods, 9(1), Article 91. https://doi.org/10.3390/foods9010091

20. Halagarda, M., Wójciak, K. M. (2022). Health and safety aspects of traditional European meat products. A review. Meat Science, 184, Article 108623. https://doi.org/10.1016/j.meatsci.2021.108623

21. Cardoso, P. da S., Fagundes, J. M., Couto, D. S., Pires, E. De M., Guimarães, C. E. D., Ribeiro, C. D. F. et al. (2020). From curing to smoking: Processes and techniques for the production of pastrami. Brazilian Journal of Development, 6(8), 61511–61520. https://doi.org/10.34117/bjdv6n8-538

22. Hassoun, A., Guðjónsdóttir, M., Prieto, M. A., Garcia-Oliveira, P., Simal-Gandara, J., Marini, F. et al. (2020). Application of novel techniques for monitoring quality changes in meat and fish products during traditional processing processes: Reconciling novelty and tradition. Processes, 8(8), Article 988. https://doi.org/10.3390/pr8080988

23. Molina, J. R. G., Frías-Celayeta, J. M., Bolton, D. J., Botinestean, C. (2024). A comprehensive review of cured meat products in the irish market: Opportunities for reformulation and processing. Foods, 13(5), Article 746. https://doi.org/10.3390/foods13050746

24. Munir, M. T., Mtimet, N., Guillier, L., Meurens, F., Fravalo, P., Federighi, M. et al. (2023). Physical treatments to control Clostridium botulinum hazards in food. Foods, 12(8), Article 1580. https://doi.org/10.3390/foods12081580

25. Deveci, G., Tek, N.A. (2024). N‐Nitrosamines: A potential hazard in processed meat products. Journal of the Science of Food and Agriculture, 104(5), 2551–2560. https://doi.org/10.1002/jsfa.13102

26. Xiao-Hui, G., Jing, W., Ye-Ling, Z., Ying, Z., Qiu-Jin, Z., Ling-Gao, L. et al. (2023). Mediated curing strategy: An overview of salt reduction for dry-cured meat products. Food Reviews International, 39(7), 4565–4580. https://doi.org/10.1080/87559129.2022.2029478

27. Das, A.K., Bhattacharya, D., Das, A., Nath, S., Bandyopadhyay, S., Nanda, P. K. et al. (2023). Current innovative approaches in reducing polycyclic aromatic hydrocarbons (PAHs) in processed meat and meat products. Chemical and Biological Technologies in Agriculture, 10(1), Article 109. https://doi.org/10.1186/s40538-023-00483-8

28. Nizio, E., Czwartkowski, K., Niedbała, G. (2023). Impact of smoking technology on the quality of food products: Absorption of polycyclic aromatic hydrocarbons (PAHs) by food products during smoking. Sustainability, 15(24), Article 16890. https://doi.org/10.3390/su152416890

29. Adeyeye, S. A. O., Ashaolu, T. J. (2022). Polycyclic aromatic hydrocarbons formation and mitigation in meat and meat products. Polycyclic Aromatic Compounds, 42(6), 3401–3411. https://doi.org/10.1080/10406638.2020.1866039

30. Bulanda, S., Janoszka, B. (2022). Consumption of thermally processed meat containing carcinogenic compounds (polycyclic aromatic hydrocarbons and heterocyclic aromatic amines) versus a risk of some cancers in humans and the possibility of reducing their formation by natural food additives — a literature review. International Journal of Environmental Research and Public Health, 19(8), Article 4781. https://doi.org/10.3390/ijerph19084781

31. Bamwesigye, D., Kupec, P., Chekuimo, G., Pavlis, J., Asamoah, O., Darkwah, S. A. et al. (2020). Charcoal and wood biomass utilization in Uganda: The socioeconomic and environmental dynamics and implications. Sustainability, 12(20), Article 8337. https://doi.org/10.3390/su12208337

32. Bensid, A., El Abed, N., Houicher, A., Regenstein, J. M., Özogul, F. (2022). Antioxidant and antimicrobial preservatives: Properties, mechanism of action and applications in food–a review. Critical Reviews in Food Science and Nutrition, 62(11), 2985–3001. https://doi.org/10.1080/10408398.2020.1862046

33. Sharma, H., Rajput, R. (2023). The science of food preservation: A comprehensive review of synthetic preservatives. Journal of Current Research in Food Science, 4(2), 25–29.

34. Font-i-Furnols, M. (2023). Meat consumption, sustainability and alternatives: An overview of motives and barriers. Foods, 12(11), Article 2144. https://doi.org/10.3390/foods12112144

35. Rodríguez Escobar, M. I., Cadena, E., Nhu, T. T., Cooreman-Algoed, M., De Smet, S., Dewulf, J. (2021). Analysis of the cultured meat production system in function of its environmental footprint: Current status, gaps and recommendations. Foods, 10(12), Article 2941. https://doi.org/10.3390/foods10122941

36. Teshome, E., Forsido, S. F., Rupasinghe, H. P. V., Olika Keyata, E. (2022). Potentials of natural preservatives to enhance food safety and shelf life: A review. The Scientific World Journal, 2022(1), Article 9901018. https://doi.org/10.1155/2022/9901018

37. Wojtasik-Kalinowska, I., Szpicer, A., Binkowska, W., Hanula, M., Marcinkowska-Lesiak, M., Poltorak, A. (2023). Effect of processing on volatile organic compounds formation of meat. Applied Sciences, 13(2), Article 705. https://doi.org/10.3390/app13020705

38. Dutta, K., Shityakov, S., Zhu, W., Khalifa, I. (2022). High-risk meat and fish cooking methods of polycyclic aromatic hydrocarbons formation and its avoidance strategies. Food Control, 142, Article 109253. https://doi.org/10.1016/j.foodcont.2022.109253

39. Giampieri, A., Ling-Chin, J., Ma, Z., Smallbone, A., Roskilly, A. (2020). A review of the current automotive manufacturing practice from an energy perspective. Applied Energy, 261, Article 114074. https://doi.org/10.1016/j.apenergy.2019.114074

40. Dai, B., Cao, Y., Zhou, X., Liu, S., Fu, R., Li, C. et al. (2024). Exergy, carbon footprint and cost lifecycle evaluation of cascade mechanical subcooling CO2 commercial refrigeration system in China. Journal of Cleaner Production, 434, Article 140186. https://doi.org/10.1016/j.jclepro.2023.140186

41. Chen, Y., Zhang, X., Ji, J., Zhang, C. (2024). Cold chain transportation energy conservation and emission reduction based on phase change materials under dual-carbon background: A review. Journal of Energy Storage, 86, Article 111258. https://doi.org/10.1016/j.est.2024.111258

42. Seibt, A. C. M. D., Nerhing, P., Pinton, M. B., Santos, S. P., Leães, Y. S. V., De Oliveira, F. D. C. et al. (2024). Green technologies applied to low-NaCl fresh sausages production: Impact on oxidative stability, color formation, microbiological properties, volatile compounds, and sensory profile. Meat Science, 209, Article 109418. https://doi.org/10.1016/j.meatsci.2023.109418

43. Boukouvalas, C., Kekes, T., Oikonomopoulou, V., Krokida, M. (2024). Life cycle assessment of energy production from solid waste valorization and wastewater purification: A case study of meat processing industry. Energies, 17(2), Article 487. https://doi.org/10.3390/en17020487

44. Inguglia, E. S., Song, Z., Kerry, J. P., O’Sullivan, M. G., Hamill, R. M. (2023). Addressing clean label trends in commercial meat processing: Strategies, challenges and insights from consumer perspectives. Foods, 12(10), Article 2062. https://doi.org/10.3390/foods12102062

45. Kumar, P., Abubakar, A. A., Verma, A. K., Umaraw, P., Adewale Ahmed, M., Mehta, N. et al. (2023). New insights in improving sustainability in meat production: Opportunities and challenges. Critical Reviews in Food Science and Nutrition, 63(33), 11830–11858. https://doi.org/10.1080/10408398.2022.2096562

46. Aydin, M., Degirmenci, T. (2024). The impact of clean energy consumption, green innovation, and technological diffusion on environmental sustainability: New evidence from load capacity curve hypothesis for 10 European Union countries. Sustainable Development, 32(3), 2358–2370. https://doi.org/10.1002/sd.2794

47. Li, Z., Yang, Q., Du, H., Wu, W. (2023). Advances of pulsed electric field for foodborne pathogen sterilization. Food Reviews International, 39(7), 3603–3619. https://doi.org/10.1080/87559129.2021.2012798

48. Lopes, S. J. S., S. Sant’Ana, A., Freire, L. (2023). Non-thermal emerging processing technologies: mitigation of microorganisms and mycotoxins, sensory and nutritional properties maintenance in clean label fruit juices. Food Research International, 168, Article 112727. https://doi.org/10.1016/j.foodres.2023.112727

49. Ashrafudoulla, Md., Ulrich, M. S. I., Toushik, S. H., Nahar, S., Roy, P. K., Mizan, F. R. et al. (2023). Challenges and opportunities of non-conventional technologies concerning food safety. World's Poultry Science Journal, 79(1), 3–26. https://doi.org/10.1080/00439339.2023.2163044

50. Liu, X., Xie, Y., Sheng, H. (2023). Green waste characteristics and sustainable recycling options. Resources, Environment and Sustainability, 11, Article 100098. https://doi.org/10.1016/j.resenv.2022.100098

51. Hamed, I., Jakobsen, A. N., Lerfall, J. (2022). Sustainable edible packaging systems based on active compounds from food processing byproducts: A review. Comprehensive Reviews in Food Science and Food Safety, 21(1), 198–226. https://doi.org/10.1111/1541-4337.12870

52. Gavahian, M., Mathad, G. N., Pandiselvam, R., Lin, J., Sun, D.-W. (2021). Emerging technologies to obtain pectin from food processing by-products: A strategy for enhancing resource efficiency. Trends in Food Science and Technology, 115, 42–54. https://doi.org/10.1016/j.tifs.2021.06.018

53. Castro‐Muñoz, R., García‐Depraect, O., León‐Becerril, E., Cassano, A., Conidi, C., Fíla, V. (2021). Recovery of protein‐based compounds from meat by‐products by membrane‐assisted separations: A review. Journal of Chemical Technology and Biotechnology, 96(11), 3025–3042. https://doi.org/10.1002/jctb.6824

54. Barone, A. S., Matheus, J. R. V., de Souza, T. S. P., Moreira, R. F. A., Fai, A. E. C. (2021). Green‐based active packaging: Opportunities beyond COVID‐19, food applications, and perspectives in circular economy-A brief review. Comprehensive Reviews in Food Science and Food Safety, 20(5), 4881–4905. https://doi.org/10.1111/1541-4337.12812

55. Carpentieri, S., Soltanipour, F., Ferrari, G., Pataro, G., Donsì, F. (2021). Emerging green techniques for the extraction of antioxidants from agri-food by-products as promising ingredients for the food industry. Antioxidants, 10(9), Article 1417. https://doi.org/10.3390/antiox10091417

56. Wu, L., Zhang, C., Long, Y., Chen, Q., Zhang, W., Liu, G. (2022). Food additives: From functions to analytical methods. Critical Reviews in Food Science and Nutrition, 62(30), 8497–8517. https://doi.org/10.1080/10408398.2021.1929823

57. Ahmed, S. F., Mofijur, M., Rafa, N., Chowdhury, A. T., Chowdhury, S., Nahrin, M. et al. (2022). Green approaches in synthesising nanomaterials for environmental nanobioremediation: Technological advancements, applications, benefits and challenges. Environmental Research, 204, Article 111967. https://doi.org/10.1016/j.envres.2021.111967

58. Albert, T., Braun, P. G., Saffaf, J., Wiacek, C. (2021). Physical methods for the decontamination of meat surfaces. Current Clinical Microbiology Reports, 8(2), 9–20. https://doi.org/10.1007/s40588-021-00156-w

59. Bradu, P., Biswas, A., Nair, C., Sreevalsakumar, S., Patil, M., Kannampuzha, S. et al. (2023). Recent advances in green technology and Industrial Revolution 4.0 for a sustainable future. Environmental Science and Pollution Research, 30(60), 124488–124519. https://doi.org/10.1007/s11356-022-20024-4

60. Galanakis, C. M. (2024). The future of food. Foods, 13(4), Article 506. https://doi.org/10.3390/foods13040506

61. Keyata, E., Bikila, A. (2024). Effect of high-pressure processing on nutritional composition, microbial safety, shelf life and sensory properties of perishable food products: A review. Journal of Agriculture, Food and Natural Resources, 2(1), 69–78. https://doi.org/10.20372/afnr.v2i1.659

62. Sehrawat, R., Kaur,B. P., Nema, P. K., Tewari, S., Kumar, L. (2021). Microbial inactivation by high pressure processing: Principle, mechanism and factors responsible. Food Science and Biotechnology, 30(1), 19–35. https://doi.org/10.1007/s10068-020-00831-6

63. Gokul Nath, K., Pandiselvam, R., Sunil, C. K. (2023). Highpressure processing: Effect on textural properties of food-A review. Journal of Food Engineering, 351, Article 111521. https://doi.org/10.1016/j.jfoodeng.2023.111521

64. Inanoglu, S., Barbosa‐Cánovas, G. V., Sablani, S. S., Zhu, M. J., Keener, L., Tang, J. (2022). High‐pressure pasteurization oflow‐acid chilled ready‐to‐eat food. Comprehensive Reviews in Food Science and Food Safety, 21(6), 4939–4970. https://doi.org/10.1111/1541-4337.13058

65. Silva, F. V. M., Evelyn, E. (2023). Pasteurization of food and beverages by high pressure processing (HPP) at room temperature: Inactivation of Staphylococcus aureus, Escherichia coli, Listeria monocytogenes, Salmonella, and other microbial pathogens. Applied Sciences, 13(2), Article 1193. https://doi.org/10.3390/app13021193

66. Bernardo, Y. A. de A., do Rosario, D. K. A., Conte-Junior, C. A. (2023). Principles, application, and gaps of high-intensity ultrasound and high-pressure processing to improve meat texture. Foods, 12(3), Article 476. https://doi.org/10.3390/foods12030476

67. Chuang, S., Sheen, S. (2022). High pressure processing of raw meat with essential oils-microbial survival, meat quality, and models: A review. Food Control, 132, Article 108529. https://doi.org/10.1016/j.foodcont.2021.108529

68. de Souza, V. R., Popović, V., Bissonnette, S., Ros, I., Mats, L., Duizer, L. et al. (2020). Quality changes in cold pressed juices after processing by high hydrostatic pressure, ultraviolet-c light and thermal treatment at commercial regimes. Innovative Food Science and Emerging Technologies, 64, Article 102398. https://doi.org/10.1016/j.ifset.2020.102398

69. Varilla, C., Marcone, M., Annor, G. A. (2020). Potential of cold plasma technology in ensuring the safety of foods and agricultural produce: A review. Foods, 9(10), Article 1435. https://doi.org/10.3390/foods9101435

70. Misra, N. N., Yadav, B., Roopesh, M. S., Jo, C. (2019). Cold plasma for effective fungal and mycotoxin control in foods: Mechanisms, inactivation effects, and applications. Comprehensive Reviews in Food Science and Food Safety, 18(1), 106–120. https://doi.org/10.1111/1541–4337.12398

71. Abdel-Naeem, H. H. S., Ebaid, E. M. S. M., Khalel, K. H. M., Imre, K., Morar, A., Herman, V. et al. (2022). Decontamination of chicken meat using dielectric barrier discharge cold plasma technology: The effect on microbial quality, physicochemical properties, topographical structure, and sensory attributes. LWT, 165, Article 113739. https://doi.org/10.1016/j.lwt.2022.113739

72. Yepez, X., Illera, A. E., Baykara, H., Keener, K. (2022). Recent advances and potential applications of atmospheric pressure cold plasma technology for sustainable food processing. Foods, 11(13), Article 1833. https://doi.org/10.3390/foods11131833

73. Pankaj, S. K., Wan, Z., Keener, K. M. (2018). Effects of cold plasma on food quality: A review. Foods, 7(1), Article 4. https://doi.org/10.3390/foods7010004

74. Chizoba Ekezie, F.-G., Sun, D.-W., Cheng, J.-H. (2017). A review on recent advances in cold plasma technology for the food industry: Current applications and future trends. Trends in Food Science and Technology, 69, 46–58. https://doi.org/10.1016/j.tifs.2017.08.007

75. Gallo, M., Ferrara, L., Naviglio, D. (2018). Application of ultrasound in food science and technology: A perspective. Foods, 7(10), Article 164. https://doi.org/10.3390/foods7100164

76. Peña-Gonzalez, E., Alarcon-Rojo, A. D., Garcia-Galicia, I., Carrillo-Lopez, L., Huerta-Jimenez, M. (2019). Ultrasound as a potential process to tenderize beef: Sensory and technological parameters. Ultrasonics Sonochemistry, 53, 134–141. https://doi.org/10.1016/j.ultsonch.2018.12.045

77. Gonzalez-Gonzalez, L., Alarcon-Rojo, A. D., Carrillo-Lopez, L. M., Garcia-Galicia, I. A., Huerta-Jimenez, M., Paniwnyk, L. (2020). Does ultrasound equally improve the quality of beef? An insight into longissimus lumborum, infraspinatus and cleidooccipitalis. Meat Science, 160, Article 107963. https://doi.org/10.1016/j.meatsci.2019.107963

78. Singla, M., Sit, N. (2021). Application of ultrasound in combination with other technologies in food processing: A review. Ultrasonics Sonochemistry, 73, Article 105506. https://doi.org/10.1016/j.ultsonch.2021.105506

79. Al‐Hilphy, A. R., Al‐Temimi, A. B., Al Rubaiy, H. H. M., Anand, U., Delgado‐Pando, G., Lakhssassi, N. (2020). Ultrasound applications in poultry meat processing: A systematic review. Journal of Food Science, 85(5), 1386–1396. https://doi.org/10.1111/1750-3841.15135

80. Bariya, A. R., Rathod, N. B., Patel, A. S., Nayak, J. K. B., Ranveer, R. C., Hashem, A. et al. (2023). Recent developments in ultrasound approach for preservation of animal origin foods. Ultrasonics Sonochemistry, 101, Article 106676. https://doi.org/10.1016/j.ultsonch.2023.106676

81. Bhat, Z. F., Morton, J. D., Mason, S. L., Bekhit, A. E. A. (2018). Applied and emerging methods for meat tenderization: A comparative perspective. Comprehensive Reviews in Food Science and Food Safety, 17(4), 841–859. https://doi.org/10.1111/1541-4337.12356

82. Vanga, S. K., Wang, J., Jayaram, S., Raghavan, V. (2021). Effects of pulsed electric fields and ultrasound processing on proteins and enzymes: A review. Processes, 9(4), Article 722. https://doi.org/10.3390/pr9040722

83. Rebezov, M., Chughtai, M.F.J., Mehmood, T., Khaliq, A., Tanweer, S., Semenova, A. et al. (2021). Novel techniques for microbiological safety in meat and fish industries. Applied Sciences, 12(1), Article 319. https://doi.org/10.3390/app12010319

84. Gómez, B., Munekata, P. E. S., Gavahian, M., Barba, F. J., Martí-Quijal, F. J., Bolumar, T. et al. (2019). Application of pulsed electric fields in meat and fish processing industries: An overview. Food Research International, 123, 95–105. https://doi.org/10.1016/j.foodres.2019.04.047

85. Kantono, K., Hamid, N., Chadha, D., Ma, Q., Oey, I., Farouk, M. M. (2021). Pulsed electric field (PEF) processing of chilled and frozen-thawed lamb meat cuts: Relationships between sensory characteristics and chemical composition of meat. Foods, 10(5), Article 1148. https://doi.org/10.3390/foods10051148

86. Naliyadhara, N., Kumar, A., Girisa, S., Daimary, U. D., Hegde, M., Kunnumakkara, A. B. (2022). Pulsed electric field (PEF): Avant-garde extraction escalation technology in food industry. Trends in Food Science and Technology, 122, 238–255. https://doi.org/10.1016/j.tifs.2022.02.019

87. Zhang, H., Tikekar, R. V., Ding, Q., Gilbert, A. R., Wimsatt, S. T. (2020). Inactivation of foodborne pathogens by the synergistic combinations of food processing technologies and food‐grade compounds. Comprehensive Reviews in Food Science and Food Safety, 19(4), 2110–2138. https://doi.org/10.1111/1541-4337.12582

88. Aaliya, B., Valiyapeediyekkal Sunooj, K., Navaf, M., Parambil Akhila, P., Sudheesh, C., Ahmad Mir, S. et al. (2021). Recent trends in bacterial decontamination of food products by hurdle technology: A synergistic approach using thermal and nonthermal processing techniques. Food Research International, 147, Article 110514. https://doi.org/10.1016/j.foodres.2021.110514

89. Rathod, N. B., Phadke, G. G., Tabanelli, G., Mane, A., Ranveer, R. C., Pagarkar, A. et al. (2021). Recent advances in biopreservatives impacts of lactic acid bacteria and their metabolites on aquatic food products. Food Bioscience, 44, Article 101440. https://doi.org/10.1016/j.fbio.2021.101440

90. Kaveh, S., Hashemi, S. M. B., Abedi, E., Amiri, M. J., Conte, F. L. (2023). Bio-preservation of meat and fermented meat products by lactic acid bacteria strains and their antibacterial metabolites. Sustainability, 15(13), Article 10154. https://doi.org/10.3390/su151310154

91. Amiri, S., Motalebi Moghanjougi, Z., Rezazadeh Bari, M., Mousavi Khaneghah, A. (2021). Natural protective agents and their applications as bio-preservatives in the food industry: An overview of current and future applications. Italian Journal of Food Science, 33(SP1), 55–68. https://doi.org/10.15586/ijfs.v33iSP1.2045

92. Ursachi, C.Ș., Perța-Crișan, S., Munteanu, F.-D. (2020). Strategies to improve meat products’ quality. Foods, 9(12), Article 1883. https://doi.org/10.3390/foods9121883

93. Zimina, M., Babich, O., Prosekov, A., Sukhikh, S., Ivanova, S., Shevchenko, M. et al. (2020). Overview of global trends in classification, methods of preparation and application of bacteriocins. Antibiotics, 9(9), Article 553. https://doi.org/10.3390/antibiotics9090553

94. Wang, J., Chen, J., Sun, Y., He, J., Zhou, C., Xia, Q. et al. (2023). Ultraviolet-radiation technology for preservation of meat and meat products: Recent advances and future trends. Food Control, 148, Article 109684. https://doi.org/10.1016/j.foodcont.2023.109684

95. Indiarto, R., Irawan, A. N., Subroto, E. (2023). Meat irradiation: A comprehensive review of its impact on food quality and safety. Foods, 12(9), Article 1845. https://doi.org/10.3390/foods12091845

96. Singh, H., Bhardwaj, S. K., Khatri, M., Kim, K.-H., Bhardwaj, N. (2021). UVC radiation for food safety: An emerging technology for the microbial disinfection of food products. Chemical Engineering Journal, 417, Article 128084. https://doi.org/10.1016/j.cej.2020.128084

97. Balatsas-Lekkas, A., Arvola, A., Kotilainen, H., Meneses, N., Pennanen, K. (2020). Effect of labelling fresh cultivated blueberry products with information about irradiation technologies and related benefits on Finnish, German, and Spanish consumers’ product acceptance. Food Control, 118, Article 107387. https://doi.org/10.1016/j.foodcont.2020.107387

98. D'Souza, C., Apaolaza, V., Hartmann, P., Brouwer, A. R., Nguyen, N. (2021). Consumer acceptance of irradiated food and information disclosure–A retail imperative. Journal of Retailing and Consumer Services, 63, Article 102699. https://doi.org/10.1016/j.jretconser.2021.102699

99. Rowan, N. J. (2023). Current decontamination challenges and potentially complementary solutions to safeguard the vulnerable seafood industry from recalcitrant human norovirus in live shellfish: Quo Vadis? Science of the Total Environment, 874, Article 162380. https://doi.org/10.1016/j.scitotenv.2023.162380

100. Baggio, A., Marino, M., Innocente, N., Celotto, M., Maifreni, M. (2020). Antimicrobial effect of oxidative technologies in food processing: An overview. European Food Research and Technology, 246(4), 669–692. https://doi.org/10.1007/s00217-020-03447-6

101. Franco-Vega, A., Reyes-Jurado, F., González-Albarrán, D., Ramírez-Corona, N., Palou, E., López-Malo, A. (2021). Developments and advances of high intensity pulsed light and its combination with other treatments for microbial inactivation in food products. Food Engineering Reviews, 13, 741–768. https://doi.org/10.1007/s12393-021-09280-1

102. Roobab, U., Chacha, J. S., Abida, A., Rashid, S., Muhammad Madni, G., Lorenzo, J. M. et al. (2022). Emerging trends for nonthermal decontamination of raw and processed meat: Ozonation, high-hydrostatic pressure and cold plasma. Foods, 11(15), Article 2173. https://doi.org/10.3390/foods11152173

103. Nema, P. K., Sehrawat, R., Ravichandran, C., Kaur, B. P., Kumar, A., Tarafdar, A. (2022). Inactivating food microbes by high‐pressure processing and combined nonthermal and thermal treatment: A review. Journal of Food Quality, 2022(1), Article 5797843. https://doi.org/10.1155/2022/5797843

104. Niu, D., Zeng, X.-A., Ren, E.-F., Xu, F.-Y., Li, J., Wang, M.-S. et al. (2020). Review of the application of pulsed electric fields (PEF) technology for food processing in China. Food Research International, 137, Article 109715. https://doi.org/10.1016/j.foodres.2020.109715

105. Khadhraoui, B., Ummat, V., Tiwari, B. K., Fabiano-Tixier, A., Chemat, F. (2021). Review of ultrasound combinations with hybrid and innovative techniques for extraction and processing of food and natural products. Ultrasonics Sonochemistry, 76, Article 105625. https://doi.org/10.1016/j.ultsonch.2021.105625

106. Katsaros, G., Taoukis, P. (2021). Microbial control by high pressure processing for shelf-life extension of packed meat productsin the cold chain: Modeling and case studies. Applied Sciences, 11(3), Article 1317. https://doi.org/10.3390/app11031317

107. Li,R., Zhu, H., Chen, Y., Zhou, G., Li, C., Ye, K. (2022). Cold plasmas combined with Ar-based MAP for meatball products: Influence on microbiological shelflife and quality attributes. LWT, 159, Article 113137. https://doi.org/10.1016/j.lwt.2022.113137

108. Ulbin-Figlewicz, N., Brychcy, E., Jarmoluk, A. (2015). Effect of low-pressure cold plasma on surface microflora of meat and quality attributes. Journal of Food Science and Technology, 52, 1228–1232. https://doi.org/10.1007/s13197-013-1108-6

109. Valenzuela, C., Garcia‐Galicia, I. A., Paniwnyk, L., Alarcon-Rojo, A. D. (2021). Physicochemical characteristics and shelf life of beef treated with high‐intensity ultrasound. Journal of Food Processing and Preservation, 45(4), Article e15350. https://doi.org/10.1111/jfpp.15350

110. Aşık-Canbaz, E., Çömlekçi, S., Can Seydim, A. (2022). Effect of moderate intensity pulsed electric field on shelf-life of chicken breast meat. British Poultry Science, 63(5), 641–649. https://doi.org/10.1080/00071668.2022.2051431

111. Olaoye, O. A., Onilude, A. A. (2010). Investigation on the potential application of biological agents in the extension of shelf life of fresh beef in Nigeria. World Journal of Microbiology and Biotechnology, 26(8), 1445–1454. https://doi.org/10.1007/s11274-010-0319-5

112. Mohamed, E. F. E., Hafez, A. E.-S. E., Seadawy, H. G., Elrefai, M. F. M., Abdallah, K., Bayomi, R. M. et al. (2023). Irradiation as a promising technology to improve bacteriological and physicochemical quality of fish. Microorganisms, 11(5), Article 1105. https://doi.org/10.3390/microorganisms11051105

113. Pereira, R. N., Vicente, A. A. (2010). Environmental impact of novel thermal and non-thermal technologies in food processing. Food Research International, 43(7), 1936–1943. https://doi.org/10.1016/j.foodres.2009.09.013

114. Zhang, W., Naveena, B. M., Jo, C., Sakata, R., Zhou, G., Banerjee, R. et al. (2017). Technological demands of meat processing–An Asian perspective. Meat Science, 132, 35–44. https://doi.org/10.1016/j.meatsci.2017.05.008

115. Witrowa-Rajchert, D., Wiktor, A., Sledz, M., Nowacka, M. (2014). Selected emerging technologies to enhance the drying process: A review. Drying Technology, 32(11), 1386–1396. https://doi.org/10.1080/07373937.2014.903412

116. Mehmeti, A., Angelis-Dimakis, A., Arampatzis, G., McPhail, S., Ulgiati, S. (2018). Life cycle assessment and water footprint of hydrogen production methods: From conventional to emerging technologies. Environments, 5(2), Article 24. https://doi.org/10.3390/environments5020024

117. Sampedro, F., McAloon, A., Yee, W., Fan, X., Geveke, D. J. (2014). Cost analysis and environmental impact of pulsed electric fields and high pressure processing in comparison with thermal pasteurization. Food and Bioprocess Technology, 7(7), 1928–1937. https://doi.org/10.1007/s11947-014-1298-6

118. Yin, Y., Xu, H., Zhu, Y., Zhuang, J., Ma, R., Cui, D. et al. (2023). Recent progress in applications of atmospheric pressure plasma for water organic contaminants’ degradation. Applied Sciences, 13(23), Article 12631. https://doi.org/10.3390/app132312631

119. Ajila, C. M., Brar, S. K., Verma, M., Prasada Rao, U. J. S. (2012). Sustainable solutions for agro processing waste management: An overview. Chapter in a book: Environmental protection strategies for sustainable development. Strategies for Sustainability. Springer, Dordrecht. 2012. https://doi.org/10.1007/978-94-007-1591-2_3

120. Javourez, U., O’donohue, M., Hamelin, L. (2021). Wasteto-nutrition: A review of current and emerging conversion pathways. Biotechnology Advances, 53, Article 107857. https://doi.org/10.1016/j.biotechadv.2021.107857

121. Sharma, P., Gaur, V. K., Sirohi, R., Varjani, S., Kim, S. H., Wong, J. W. C. (2021). Sustainable processing of food waste for production of bio-based products for circular bioeconomy. Bioresource Technology, 325, Article 124684. https://doi.org/10.1016/j.biortech.2021.124684

122. Aguirre-Garcia, Y.L.,Nery-Flores, S.D.,Campos-Muzquiz, L. G., Flores-Gallegos, A. C., Palomo-Ligas, L., Ascacio-Valdés, J. A. et al. (2024). Lactic acid fermentation in the food industry and bio-preservation of food. Fermentation, 10(3), Article 168. https://doi.org/10.3390/fermentation10030168

123. Zou, Y., Wang, L., Cai, P., Li, P., Zhang, M., Sun, Z. et al. (2017). Effect of ultrasound assisted extraction on the physicochemical and functional properties of collagen from soft-shelled turtle calipash. International Journal of Biological Macromolecules, 105, 1602–1610. https://doi.org/10.1016/j.ijbiomac.2017.03.011

124. Ikram, M., Ferasso, M., Sroufe, R., Zhang, Q. (2021). Assessing green technology indicators for cleaner production and sustainable investments in a developing country context. Journal of Cleaner Production, 322, Article 129090. https://doi.org/10.1016/j.jclepro.2021.129090

125. Chakka, A. K., Sriraksha, M. S., Ravishankar, C. N. (2021). Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. LWT, 151, Article 112140. https://doi.org/10.1016/j.lwt.2021.112140

126. Mona, S., Kumar, S. S., Kumar, V., Parveen, K., Saini, N., Deepak, B. et al. (2020). Green technology for sustainable biohydrogen production (waste to energy): A review. Science of the Total Environment, 728, Article 138481. https://doi.org/10.1016/j.scitotenv.2020.138481

127. Muñoz, I., de Sousa, D. A. B., Guardia, M. D., Rodriguez, C. J., Nunes, M. L., Oliveira, H. et al. (2022). Comparison of different technologies (conventional thermal processing, radiofrequency heating and high-pressure processing) in combination with thermal solar energy for high quality and sustainable fish soup pasteurization. Food and Bioprocess Technology, 15(4), 795–805. https://doi.org/10.1007/s11947-022-02782-8

128. Houška, M., Silva, F. V. M., Evelyn, Buckow, R., Terefe, N.S., Tonello, C. (2022). High pressure processing applications in plant foods. Foods, 11(2), Article 223. https://doi.org/10.3390/foods11020223

129. Andreani, G., Sogari, G., Marti, A., Froldi, F., Dagevos, H., Martini, D. (2023). Plant-based meat alternatives: Technological, nutritional, environmental, market, and social challenges and opportunities. Nutrients, 15(2), Article 452. https://doi.org/10.3390/nu15020452

130. de Araújo, P. D., Araújo, W. M. C., Patarata, L., Fraqueza, M. J. (2022). Understanding the main factors that influence consumer quality perception and attitude towards meat and processed meat products. Meat Science, 193, Article 108952. https://doi.org/10.1016/j.meatsci.2022.108952

131. Young, E., Mirosa, M., Bremer, P. (2020). A systematic review of consumer perceptions of smart packaging technologies for food. Frontiers in Sustainable Food Systems, 4, Article 63. https://doi.org/10.3389/fsufs.2020.00063

132. Boz, Z., Korhonen, V., Koelsch Sand, C. (2020). Consumer considerations for the implementation of sustainable packaging: A review. Sustainability, 12(6) Article 2192. https://doi.org/10.3390/su12062192

133. Sievert, K., Lawrence, M., Parker, C., Baker, P. (2021). Understanding the political challenge of red and processed meat reduction for healthy and sustainable food systems: A narrative review of the literature. International Journal of Health Policy and Management, 10(12), Article 793. https://doi.org/10.34172/ijhpm.2020.238

134. Huang, H.-W., Hsu, C.-P., Wang, C.-Y. (2020). Healthy expectations of high hydrostatic pressure treatment in food processing industry. Journal of Food and Drug Analysis, 28(1), 1–13. https://doi.org/10.1016/j.jfda.2019.10.002

135. Meijer, G. W., Lähteenmäki, L., Stadler, R. H., Weiss, J. (2021). Issues surrounding consumer trust and acceptance of existing and emerging food processing technologies. Critical Reviews in Food Science and Nutrition, 61(1), 97–115. https://doi.org/10.1080/10408398.2020.1718597

136. Roh, T., Noh, J., Oh, Y., Park, K.-S. (2022). Structural relation-ships of a firm's green strategies for environmental performance: The roles of green supply chain management and green marketing innovation. Journal of Cleaner Production, 356, Article 131877. https://doi.org/10.1016/j.jclepro.2022.131877

137. Kubo, M. T., Baicu, A., Erdogdu, F., Poças, M. F., Silva, C. L., Simpson, R. et al. (2023). Thermal processing of food: Challenges, innovations and opportunities. A position paper. Food Reviews International, 39(6), 3344–3369. https://doi.org/10.1080/87559129.2021.2012789

138. Charlebois, S., Juhasz, M., Music, J., Vézeau, J. (2021). A review of Canadian and international food safety systems: Issues and recommendations for the future. Comprehensive Reviews in Food Science and Food Safety, 20(5), 5043–5066. https://doi.org/10.1111/1541-4337.12816

139. Manning, L. (2016). Food fraud: Policy and food chain. Current Opinion in Food Science, 10, 16–21. https://doi.org/10.1016/j.cofs.2016.07.001


Review

For citations:


El-tahlawy A.S. Green processing technology of meat and meat products: A review. Theory and practice of meat processing. 2025;10(1):32-44. https://doi.org/10.21323/2414-438X-2025-10-1-32-44

Views: 1035


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)