Preview

Theory and practice of meat processing

Advanced search

Immunochromatographic food control tools: New developments and practical prospects

https://doi.org/10.21323/2414-438X-2024-9-4-280-295

Abstract

In the modern food production technologies, the tools and means of simple and rapid testing raw materials, intermediate products and the final ready-to-consume food products are in high demand. This monitoring allows determining the content of toxic and pathogenic contaminants and confirms the compliance of the objects being tested with the established regulatory requirements. Mobile tests tools and means (so called test systems) provide the opportunity of wide range monitoring without involving the specialized laboratories and highly qualified specialists. Thus, test systems for detection of toxic and pathogenic contaminants serve as the useful addition to confirming instrumental analytical methods. An actively developing approach for this field testing is the using of immunochromatographic test strips, in which strips all the necessary reagents are applied to the membrane components of the analytical system. Contact of the test strip with the sample being tested, initiates all further interactions and generates the recordable or visually assessable optical signal. The market of test systems based on immunochromatographic analysis is constantly growing, thus offering the permanently widening choice of solutions. However, in recent years there has been a real boom of new developments in immunochromatography field, thus offering various options for highly sensitive and information capacitive analytical systems. This study systematizes these developments and provides their comparative assessment in terms of prospects for their technological implementation and practical application in the coming years. The opportunities of designing the antibodies and alternative receptor molecules for controlling the affinity and the selectivity of recognition of the compounds being monitored are considered. The advantages and limitations of the new nanodispersed markers and non-optical methods for their registration in immunochromatography are discussed. The methods for quantitative assessment of the contaminants content via immunochromatography are characterized. The developed design options of the test systems for multiplex control — simultaneous detection of several compounds — are presented. Examples of integration of immunochromatographic tests with the systems of automatic registration, processing, transfer, storage and analysis of results of numerous tests are represented.

About the Authors

A. V. Zherdev
AN Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Anatoly V. Zherdev, Doctor of Chemical Sciences, Leading Researcher, Laboratory of Immunobiochemistry

33, Leninsky prospect, 119071, Moscow



E. A. Zvereva
AN Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Elena A. Zvereva, Candidate of Biological Sciences, Senior Researcher, Laboratory of Immunobiochemistry

33, Leninsky prospect, 119071, Moscow



N. A. Taranova
AN Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Nadezhda A. Taranova, Candidate of Chemical Sciences, Senior Researcher, Laboratory of Immunobiochemistry

33, Leninsky prospect, 119071, Moscow



I. V. Safenkova
AN Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Irina V. Safenkova, Candidate of Biological Sciences, Senior Researcher, Laboratory of Immunobiochemistry

33, Leninsky prospect, 119071, Moscow



N. L. Vostrikova
VM Gorbatov Federal Research Center for Food Systems
Russian Federation

Natalia L. Vostrikova, Doctor of Technical Sciences, Head of the Research Testing Center

33, Leninsky prospect, 119071, Moscow



B. B. Dzantiev
AN Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences
Russian Federation

Boris B. Dzantiev, Doctor of Chemical Sciences, Head of the Laboratory of Immunobiochemistry

33, Leninsky prospect, 119071, Moscow



References

1. Tsagkaris, A. S., Nelis, J. L. D., Ross, G. M. S., Jafari, S., Guercetti, J., Kopper, K. et al. (2019). Critical assessment of recent trends related to screening and confirmatory analytical methods for selected food contaminants and allergens. TrAC — Trends in Analytical Chemistry, 121, Article 115688. https://doi.org/10.1016/j.trac.2019.115688

2. Pratiwi, R., Ramadhanti, S. P., Amatulloh, A., Megantara, S., Subra, L. (2023). Recent advances in the determination of veterinary drug residues in food. Foods, 12(18), Article 3422. https://doi.org/10.3390/foods12183422

3. Khalifa, H. O., Shikoray, L., Mohamed, M.-Y. I., Habib, I., Matsumoto, T. (2024). Veterinary drug residues in the food chain as an emerging public health threat: Sources, analytical methods, health impacts, and preventive measures. Foods, 13(11), Article 1629. https://doi.org/10.3390/foods13111629

4. Visciano, P., Schirone, M. (2020). Rapid methods for assessing food safety and quality. Foods, 9(4), Article 533. https://doi.org/10.3390/foods9040533

5. Younes, N., Yassine, H. M., Kourentzi, K., Tang, P., Litvinov, D., Willson, R. C. et al. (2024). A review of rapid food safety testing: Using lateral flow assay platform to detect foodborne pathogens. Critical Reviews in Food Science and Nutrition, 64(27), 9910–9932. https://doi.org/10.1080/10408398.2023.2217921

6. Sun, Q., Dong, Y., Wen, X., Zhang, X., Hou, S., Zhao, W. et al. (2023). A review on recent advances in mass spectrometry analysis of harmful contaminants in food. Frontiers in Nutrition, 10, Article 1244459. https://doi.org/10.3389/fnut.2023.1244459

7. Domínguez, I., Frenich, A. G., Romero-González, R. (2020). Mass spectrometry approaches to ensure food safety. Analytical Methods, 12(9), 1148–1162. https://doi.org/10.1039/C9AY02681A

8. Di Nardo, F., Chiarello, M., Cavalera, S., Baggiani, C., Anfossi, L. (2021). Ten years of lateral flow immunoassay technique applications: Trends, challenges and future perspectives. Sensors, 21(15), Article 5185. https://doi.org/10.3390/s21155185

9. Parolo, C., Sena-Torralba, A., Bergua, J. F., Calucho, E., Fuentes-Chust, C., Hu, L. M. et al. (2020). Tutorial: Design and fabrication of nanoparticle-based lateral-flow immunoassays. Nature Protocols, 15(12), 3788–3816. https://doi.org/10.1038/s41596-020-0357-x

10. Wang, Z. X., Zhao, J., Xu, X. X., Guo, L. L., Xu, L. G., Sun, M. Z. et al. (2022). An overview for the nanoparticles-based quantitative lateral flow assay. Small Methods, 6(1), Article 2101143. https://doi.org/10.1002/smtd.202101143

11. Leavitt, S. A. (2006). “A private little revolution”: The home pregnancy test in American culture. Bulletin of the History of Medicine, 80(2), 317–345. https://doi.org/10.1353/bhm.2006.0064

12. Zhou, Y. F., Wu, Y. H., Ding, L., Huang, X. L., Xiong, Y. H. (2021). Point-of-care COVID-19 diagnostics powered by lateral flow assay. Trends in Analytical Chemistry, 145, Article 116452. https://doi.org/10.1016/j.trac.2021.116452

13. Jackson, T. M., Ekins, R. P. (1986). Theoretical limitations on immunoassay sensitivity: Current practice and potential advantages of fluorescent Eu3+ chelates as non-radioisotopic tracers. Journal of Immunological Methods, 87(1), 13–20. https://doi.org/10.1016/0022-1759(86)90338-8

14. Zherdev, A. V., Dzantiev, B. B. (2022). Detection limits of immunoanalytical systems: Limiting factors and methods of reduction. Journal of Analytical Chemistry, 77(4), 391–401. https://doi.org/10.1134/S1061934822040141

15. Momenbeitollahi, N., Cloet, T., Li, H. Y. (2021). Pushing the detection limits: Strategies towards highly sensitive opticalbased protein detection. Analytical and Bioanalytical Chemistry, 413(24), 5995–6011. https://doi.org/10.1007/s00216-021-03566-3

16. Usha, S. P., Manoharan, H., Deshmukh, R., Alvarez-Diduk, R., Calucho, E., Sai, V. V. R. et al. (2021). Attomolar analyte sensing techniques (AttoSens): A review on a decade of progress on chemical and biosensing nanoplatforms. Chemical Society Reviews, 50(23), 13012–13089. https://doi.org/10.1039/D1CS00137J

17. Wang, P., Li, J., Guo, L., Li, J., He, F., Zhang, H. et al. (2024). The developments on lateral flow immunochromatographic assay for food safety in recent 10 years: A review. Chemosensors, 12(6), Article 88. https://doi.org/10.3390/chemosensors12060088

18. Anfossi L., D’Arco, G., Baggiani C., Giovannoli C., Giraudi, G. (2011). A lateral flow immunoassay for measuring ochratoxin A: Development of a single system for maize, wheat and durum wheat. Food Control, 22(12), 1965–1970. https://doi.org/10.1016/j.foodcont.2011.05.012

19. Ciasca, B., De Saeger, S., De Boevre, M., Reichel, M., Pascale, M., Logrieco, A. F. et al. (2022). Mycotoxin analysis of grain via dust sampling: Review, recent advances and the way forward: The contribution of the MycoKey project. Toxins, 14(6), Article 381. https://doi.org/10.3390/toxins14060381

20. Li, P., Zhang, W., Zhang, Z., Zhang, Q., Chen, Z.-Y. (2017). Fundamentals of hapten-protein conjugate synthesis to obtain high-quality antibodies for analysis of food and environmental contaminants. Current Organic Chemistry, 21(26), 2606–2611. https://doi.org/10.2174/1385272821666170503105156

21. Chen, Y., Ma, S., Zhou, M., Yao, Y., Gao, X., Fan, X. et al. (2024). Advancements in the preparation technology of small molecule artificial antigens and their specific antibodies: A comprehensive review. Analyst, 149(18), 4583–4599. https://doi.org/10.1039/D4AN00501E

22. Lee, N., McAdam, D. P., Skerritt, J. H. (1998). Development of immunoassays for type II synthetic pyrethroids. 1. Hapten design and application to heterologous and homologous assays. Journal of Agricultural and Food Chemistry, 46(2), 520– 534. https://doi.org/10.1021/jf970438r

23. Ceballos-Alcantarilla, E., López-Puertollano, D., Agulló, C., Abad-Fuentes, A., Abad-Somovilla, A., Mercader, J. V. (2018). Combined heterologies for monoclonal antibody-based immunoanalysis of fluxapyroxad. Analyst, 143, 5718–5727. https://doi.org/10.1039/C8AN01771A

24. Sotnikov, D. V., Zherdev, A. V., Zvereva, E. A., Eremin, S. A., Dzantiev, B. B. (2021). Changing cross-reactivity for different immunoassays using the same antibodies: Theoretical description and experimental confirmation. Applied Sciences, 11(14), Article 6581. https://doi.org/10.3390/app11146581

25. Li, Y., Zhang, G., Mao, X., Yang, S., De Ruyck, K., Wu, Y. (2018). High sensitivity immunoassays for small molecule compounds detection — Novel noncompetitive immunoassay designs. TrAC — Trends in Analytical Chemistry, 103, 198–208. https://doi.org/10.1016/j.trac.2018.04.008

26. Du, K., Gao, L., Li, T., Rao, W. (2024). Methods and applications of noncompetitive hapten immunoassays. Analytical Methods, 16(31), 5357–5371. https://doi.org/10.1039/D4AY00922C

27. Altshuler, E. P., Serebryanaya, D. V., Katrukha, A. G. (2010). Generation of recombinant antibodies and means for increasing their affinity. Biochemistry (Moscow), 75(13), 1584– 1605. https://doi.org/10.1134/s0006297910130067

28. Sormanni, P., Aprile, F. A., Vendruscolo, M. (2018). Third generation antibody discovery methods: In silico rational design. Chemical Society Reviews, 47(24), 9137–9157. https://doi.org/10.1039/C8CS00523K

29. Fernández-Quintero, M. L., Pomarici, N. D., Fischer A.-L. M., Hoerschinger, V. J., Kroell, K. B., Jakob, R., Riccabona, J. R. et al. (2023). Structure and dynamics guiding design of antibody therapeutics and vaccines. Antibodies, 12(4), Article 67. https://doi.org/10.3390/antib12040067

30. Tang, Y., Yuan, J., Zhang, Y., Khan, I. M., Ma, P., Wang, Z. (2024). Lateral flow assays based on aptamers for food safety applications. Food Control, 155, Article 110051. https://doi.org/10.1016/j.foodcont.2023.110051

31. Jaisankar, A., Krishnan, S., Rangasamy, L. (2022). Recent developments of aptamer-based lateral flow assays for point-ofcare (POC) diagnostics. Analytical Biochemistry, 655(15), Article 114874. https://doi.org/10.1016/j.ab.2022.114874

32. Majdinasab, M., Badea, M., Marty, J. L. (2022). Aptamerbased lateral flow assays: Current trends in clinical diagnostic rapid tests. Pharmaceuticals, 15(1), Article 90. https://doi.org/10.3390/ph15010090

33. Wang, S., Zhou, Z., Cao, M., Pan, Y., Zhang, Y., Fang, Y. et al. (2024). A comprehensive review of aptamer screening and application for lateral flow strip: Current status and future perspectives. Talanta, 275, Article 126181. https://doi.org/10.1016/j.talanta.2024.126181

34. Parisi, O. I., Francomano, F., Dattilo, M., Patitucci, F., Prete, S., Amone, F. et al. (2022). The evolution of molecular recognition: From antibodies to molecularly imprinted polymers (MIPs) as artificial counterpart. Journal of Functional Biomaterials, 13, Article 12. https://doi.org/10.3390/jfb13010012

35. Luo, Y., Ye, Q., Xie, T., Xie, J., Mao, K., Zou, H. et al. (2023). A novel molecular imprinted polymers-based lateral flow strip for sensitive detection of thiodiglycol. Journal of Analysis and Testing, 7, 110–117. https://doi.org/10.1007/s41664-023-00250-6

36. Razo, S. C., Panferov, V. G., Safenkova, I. V., Varitsev, Y. A., Zherdev, A. V., Pakina, E. N. et al. (2018). How to improve sensitivity of sandwich lateral flow immunoassay for corpuscular antigens on the example of potato virus Y. Sensors, 18(11), Article 3975. https://doi.org/10.3390/s18113975

37. Deng, S. L., Shan, S., Xu, C. L., Liu, D. F., Xiong, Y. H., Wei, H. et al. (2014). Sample preincubation strategy for sensitive and quantitative detection of clenbuterol in swine urine using a fluorescent microsphere-based immunochromatographic assay. Journal of Food Protection, 77(11), 1998–2003. https://doi.org/10.4315/0362-028X.JFP-14-086

38. Urusov, A.E., Zherdev, A.V., Dzantiev, B.B. (2014). Use of gold nanoparticle-labeled secondary antibodies to improve the sensitivity of an immunochromatographic assay for aflatoxin B1. Microchimica Acta, 181(15–16), 1939–1946. https://doi.org/10.1007/s00604-014-1288-4

39. Majdinasab, M., Zareian, M., Zhang, Q., Li, P. (2019). Development of a new format of competitive immunochromatographic assay using secondary antibody–europium nanoparticle conjugates for ultrasensitive and quantitative determination of ochratoxin A. Food Chemistry, 275, 721– 729. https://doi.org/10.1016/j.foodchem.2018.09.112

40. Iles, A. H., He, P. J. W., Katis, I. N., Horak, P., Eason, R. W., Sones C. L. (2022). Optimization of flow path parameters for enhanced sensitivity lateral flow devices. Talanta, 248, Article 123579. https://doi.org/10.1016/j.talanta.2022.123579

41. He, G., Dong, T., Yang, Z., Jiang, Z. (2022). Mitigating hook effect in one-step quantitative sandwich lateral flow assay by timed conjugate release. Talanta, 240, Article 123157. https://doi.org/10.1016/j.talanta.2021.123157

42. Sena-Torralba, A., Ngo, D. B., Parolo, C., Hu, L., ÁlvarezDiduk, R., Bergua, J. F. et al. (2020). Lateral flow assay modified with time-delay wax barriers as a sensitivity and signal enhancement strategy. Biosensors and Bioelectronics, 168, Article 112559. https://doi.org/10.1016/j.bios.2020.112559

43. Ishii, M., Preechakasedkit, P., Yamada, K., Chailapakul, O., Suzuki, K., Citterio, D. (2018). Wax-assisted one-step enzymelinked immunosorbent assay on lateral flow test devices. Analytical Sciences, 34(1), 51–56. https://doi.org/10.2116/analsci.34.51

44. Hendrickson, O. D., Zvereva, E. A., Zherdev, A. V., Dzantiev, B. B. (2022). Cascade-enhanced lateral flow immunoassay for sensitive detection of okadaic acid in seawater, fish, and seafood. Foods, 11(12), Article 1691. https://doi.org/10.3390/foods11121691

45. Panraksa, Y., Apilux, A., Jampasa, S., Putong, S., Henry, C. S., Rengpipat, S., et al. (2021). A facile one-step gold nanoparticles enhancement based on sequential patterned lateral flow immunoassay device for C-reactive protein detection. Sensors and Actuators, B: Chemical, 329, Article 129241. https://doi.org/10.1016/j.snb.2020.129241

46. Shen, M., Li, N., Lu, Y., Cheng, J., Xu, Y. (2020). An enhanced centrifugation-assisted lateral flow immunoassay for the point-of-care detection of protein biomarkers. Lab on a Chip, 20(15), 2626–2634. https://doi.org/10.1039/D0LC00518E

47. Hu, H., Xing, H., Zhang, Y., Liu, X., Gao, S., Wang, L. et al. (2024). Centrifugated lateral flow assay strips based on dualemission carbon dots modified with europium ions for ratiometric determination and on-site discrimination of tetracyclines in environment. Science of the Total Environment, 951, Article 175478. https://doi.org/10.1016/j.scitotenv.2024.175478

48. Liu, S., Liao, Y., Shu, R., Sun, J., Zhang, D., Zhang, W. et al. (2024). Evaluation of the multidimensional enhanced lateral flow immunoassay in point-of-care. ACS Nano, 18(40), 27167–27205. https://doi.org/10.1021/acsnano.4c06564

49. Panferov, V. G., Ivanov, N. A., Brinc, D., Fabros, A., Krylov, S. N. (2023). Electrophoretic assembly of antibody-antigen complexes facilitates 1000 times improvement in the limit of detection of serological paper-based assay. ACS Sensors, 8(4), 1792–1798. https://doi.org/10.1021/acssensors.3c00130

50. Le, T. S., He, S., Takahashi, M., Enomoto, Y., Matsumura, Y., Maenosono, S. (2021). Enhancing the sensitivity of lateral flow immunoassay by magnetic enrichment using multifunctional nanocomposite probes. Langmuir, 37(21), 6566– 6577. https://doi.org/10.1021/acs.langmuir.1c00905

51. Goryacheva, I. Y., Lenain, P., De Saeger, S. (2013). Nanosized labels for rapid immunotests. TrAC — Trends in Analytical Chemistry, 46, 30–43. https://doi.org/10.1016/j.trac.2013.01.013

52. Su, Z., Dou, W., Liu, X., Ping, J., Li, D., Ying, Y. et al. (2022). Nano-labeled materials as detection tags for signal amplification in immunochromatographic assay. TrAC — Trends in Analytical Chemistry, 154, Article 116673. https://doi.org/10.1016/j.trac.2022.116673

53. Danthanarayana, A. N., Brgoch, J., Willson, R. C. (2022). Photoluminescent molecules and materials as diagnostic reporters in lateral flow assays. ACS Applied Bio Materials, 5(1), 82–96. https://doi.org/10.1021/acsabm.1c01051

54. Kim, J., Shin, M.-S., Shin, J., Kim, H.-M., Pham, X.-H., Park, S-m. et al. (2023). Recent trends in lateral flow immunoassays with optical nanoparticles. International Journal of Molecular Sciences, 24(11), Article 9600. https://doi.org/10.3390/ijms24119600

55. Fang, B., Xiong, Q., Duan, H., Xiong, Y., Lai, W. (2022). Tailored quantum dots for enhancing sensing performance of lateral flow immunoassay. TrAC — Trends in Analytical Chemistry, 157, Article 116754. https://doi.org/10.1016/j.trac.2022.116754

56. Guo, J., Chen, S., Guo, J., Ma, X. (2021). Nanomaterial labels in lateral flow immunoassays for point-of-care-testing. Journal of Materials Science and Technology, 60, 90–104. https://doi.org/10.1016/j.jmst.2020.06.003

57. Moyano, A., Serrano-Pertierra, E., Salvador, M., MartínezGarcía, J. C., Rivas, M., Blanco-López, M.C. (2020). Magnetic lateral flow immunoassays. Diagnostics, 10(5), Article 10050288. https://doi.org/10.3390/diagnostics10050288

58. Zhao, Y., Sang, J., Fu, Y., Guo, J., Guo, J. (2023). Magnetic nanoprobe-enabled lateral flow assays: Recent advances. Analyst, 148(15), 3418–3431. https://doi.org/10.1039/d3an00044c

59. Panferov, V. G., Safenkova, I. V., Zherdev, A. V., Dzantiev, B. B. (2021). The steadfast Au@Pt soldier: Peroxide-tolerant nanozyme for signal enhancement in lateral flow immunoassay of peroxidase-containing samples. Talanta, 225, Article 121961. https://doi.org/10.1016/j.talanta.2020.121961

60. Liu, S., Dou, L., Yao, X., Zhang, W., Zhao, M., Yin, X. et al. (2020). Nanozyme amplification mediated on-demand multiplex lateral flow immunoassay with dual-readout and broadened detection range. Biosensors and Bioelectronics, 169, Article 112610. https://doi.org/10.1016/j.bios.2020.112610

61. Cai, X., Liang, M., Ma, F., Zhang, Z., Tang, X., Jiang, J. et al. (2022). Nanozyme-strip based on MnO2 nanosheets as a catalytic label for multi-scale detection of aflatoxin B1 with an ultrabroad working range. Food Chemistry, 377, Article 131965. https://doi.org/10.1016/j.foodchem.2021.131965

62. Li, H., Peng, Y., Huang, X., Wan, R., Zhang, L., Wang, X. et al. (2024). Advances in design and preparation of nanozymes and their applications for constructing higher sensitive lateral flow assays. Coordination Chemistry Reviews, 510, Article 215797. https://doi.org/10.1016/j.ccr.2024.215797

63. Baranwal, A., Shukla, R., Bansal, V. (2024). Nanozyme-enhanced paper-based biosensor technologies. TrAC — Trends in Analytical Chemistry, 172, Article 117573. https://doi.org/10.1016/j.trac.2024.117573

64. Panferov, V. G., Liu, J. (2024). Optical and catalytic properties of nanozymes for colorimetric biosensors: Advantages, limitations, and perspectives. Advanced Optical Materials, 12(30), Article 2401318. https://doi.org/10.1002/adom.202401318

65. Anfossi, L., Di Nardo, F., Cavalera, S., Giovannoli, C., Baggiani, C. (2019). Multiplex lateral flow immunoassay: An overview of strategies towards high-throughput pointof-need testing. Biosensors, 9(1), Article 2. https://doi.org/10.3390/bios9010002

66. Huang, L., Tian, S., Zhao, W., Liu, K., Ma, X., Guo, J. (2020). Multiplexed detection of biomarkers in lateral-flow immunoassays. Analyst, 145(8), 2828–2840. https://doi.org/10.1039/C9AN02485A

67. Cavalera, S., Di Nardo, F., Forte, L., Marinoni, F., Chiarello, M., Baggiani, C., Anfossi, L. (2020). Switching from multiplex to multimodal colorimetric lateral flow immunosensor. Sensors, 20(10), Article 6609. https://doi.org/10.3390/s20226609

68. Safenkova, I. V., Pankratova, G. K., Zaitsev, I. A., Varitsev, Yu. A., Vengerov, Yu. Yu., Zherdev, A. V. et al. (2016). Multiarray on a test strip (MATS): Rapid multiplex immunodetection of priority potato pathogens. Analytical and Bioanalytical Chemistry, 408(22), 6009–6017. https://doi.org/10.1007/s00216-016-9463-6

69. Dyan, B., Seele, P. P., Skepu, A., Mdluli, P. S., Mosebi, S., Sibuyi, N. R. S. (2022). A review of the nucleic acid-based lateral flow assay for detection of breast cancer from circulating biomarkers at a point-of-care in low income countries. Diagnostics, 12(8), Article 1973. https://doi.org/10.3390/diagnostics12081973

70. Wang, J., Davidson, J. L., Kaur, S., Dextre, A. A., Ranjbaran, M., Kamel, M. S. et al. (2022). Paper-based biosensors for the detection of nucleic acids from pathogens. Biosensors, 12(12), Article 1094. https://doi.org/10.3390/bios12121094

71. Ivanov, A. V., Safenkova, I. V., Zherdev, A. V., Dzantiev, B. B. (2021). The potential use of isothermal amplification assays for in-field diagnostics of plant pathogens. Plants, 10(11), Article 2424. https://doi.org/10.3390/plants10112424

72. Gong, H., Gai, S., Tao, Y., Du, Y., Wang, Q., Ansari, A. A. et al. (2024). Colorimetric and photothermal dual-modal switching lateral flow immunoassay based on a forced dispersion Prussian Blue nanocomposite for the sensitive detection of prostate-specific antigen. Analytical Chemistry, 96(21), 8665– 8673. https://doi.org/10.1021/acs.analchem.4c00862

73. Chowdhury, P., Lawrance, R., Lu Z.-L., Lin, H.-C., Chan, Y.-H. (2024). Recent progress in dual/multi-modal detection modes for improving sensitivity and specificity of lateral flow immunoassays applied for point-of-care diagnostics. TrAC — Trends in Analytical Chemistry, 177, Article 117798. https://doi.org/10.1016/j.trac.2024.117798

74. Park, J. (2022). Lateral flow immunoassay reader technologies for quantitative point-of-care testing. Sensors, 22(19), Article 7398. https://doi.org/10.3390/s22197398

75. Park, J. (2024). Smartphone based lateral flow immunoassay quantifications. Journal of Immunological Methods, 533, Article 113745. https://doi.org/10.1016/j.jim.2024.113745

76. Grudpan, K., Kolev S. D., Lapanantnopakhun, S., McKelvie, I. D., Wongwilai, W. (2015). Applications of everyday IT and communications devices in modern analytical chemistry: A review. Talanta, 136, 84–94. https://doi.org/10.1016/j.talanta.2014.12.042

77. Kholafazad-Kordasht, H., Hasanzadeh, M., Seidi, F. (2021). Smartphone based immunosensors as next generation of healthcare tools: Technical and analytical overview towards improvement of personalized medicine. TrAC — Trends in Analytical Chemistry, 145, Article 116455. https://doi.org/10.1016/j.trac.2021.116455

78. Fujiuchi, K., Aoki, N., Ohtake, T., Iwashita, T., Kawasaki, H. (2024). Transitions in immunoassay leading to next-generation lateral flow assays and future prospects. Biomedicines, 12(10), Article 2268. https://doi.org/10.3390/biomedicines12102268

79. Kaufmann, A., Butcher, P., Maden, K., Walker, S., Widmer M. (2015). Determination of nitrofuran and chloramphenicol residues by high resolution mass spectrometry versus tandem quadrupole mass spectrometry. Analytica Chimica Acta, 862, 41–52. https://doi.org/10.1016/j.aca.2014.12.036

80. Zhang, Z., Wu, Y., Li, X., Wang, Y., Li, H., Fu, Q. et al. (2017). Multi-class method for the determination of nitroimidazoles, nitrofurans, and chloramphenicol in chicken muscle and egg by dispersive-solid phase extraction and ultra-high performance liquid chromatography-tandem mass spectrometry. Food Chemistry, 217, 182–190. https://doi.org/10.1016/j.foodchem.2016.08.097

81. Budd, J., Miller, B. S., Weckman, N. E., Cherkaoui, D., Huang, D., Decruz A. T. et al. (2023). Lateral flow test engineering and lessons learned from COVID-19. Nature Reviews Bioengineering, 1, 13–31. https://doi.org/10.1038/s44222-022-00007-3


Review

For citations:


Zherdev A.V., Zvereva E.A., Taranova N.A., Safenkova I.V., Vostrikova N.L., Dzantiev B.B. Immunochromatographic food control tools: New developments and practical prospects. Theory and practice of meat processing. 2024;9(4):280-295. (In Russ.) https://doi.org/10.21323/2414-438X-2024-9-4-280-295

Views: 1029


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)