Preview

Theory and practice of meat processing

Advanced search

Biodegradable meat packaging: Microbial safety and control for environmental pollution

https://doi.org/10.21323/2414-438X-2024-9-2-169-179

Abstract

Plastic fragments from packaging material not only pollute the environment but also contaminate food material, causing detrimental health effects. The ultimate solution to this “white” pollution is biodegradable food packaging material. These films can be produced using proteins, polysaccharide and lipid-based materials and can enhance the shelf life of perishable commodities like meat and meat products by incorporating the natural antioxidant and microbial compound in packaging matrix, like essential oils. Essential oils of the aromatic plants due to their diverse phenolic profile possess strong antimicrobial and antioxidant potential, they open new doors of research to develop less hazardous food preservatives and drugs. These films and coatings improve nutritional and sensory attributes of packaged food. These films not only improve food quality but also overcome the burden of environmental pollution.

About the Authors

K. Saeed
Khwaja Fareed University of Engineering and Information Technology
Pakistan

Kanza Saeed, MS (Food Technology), Lecturer, Institute of Food Science and Technology, Faculty of Natural Science

Abu Dhabi Road, Rahim Yar Khan, 64200

Tel.: +92–333–746–80–85



Z. Ali
Charoen Pokphand Pakistan Pvt. Ltd
Pakistan

Zaryab Ali, MS(Agriculture Business), Deputy Section Manager, Sales Department

18-A Commercial Zone Phase-5, DHA, Lahore

Tel.: +92–333–623–04–14



References

1. Saraiva, A., Carrascosa, C., Raheem, D., Ramos, F., Raposo, A. (2020). Natural sweeteners: The relevance of food naturalness for consumers, food security aspects, sustainability and health impacts. International Journal of Environmental Research and Public Health, 17(17), Article 6285. https://doi.org/10.3390%2Fijerph17176285

2. Li, F., Zhong, Q., Kong, B., Wang, B., Pan, N., Xia, X. (2020). Deterioration in quality of quick-frozen pork patties induced by changes in protein structure and lipid and protein oxidation during frozen storage. Food Research International, 133, Article 109142. https://doi.org/10.1016/j.foodres.2020.109142

3. Goretska, M. (2023). The effect of recommended consumer thawing methods on the internal cooked color of ground beef patties. Master's thesis, Oklahoma State University, 2023.

4. Grebenteuch, S., Kanzler, C., Klaußnitzer, S., Kroh, L. W., Rohn, S. (2021). The formation of methyl ketones during lipid oxidation at elevated temperatures. Molecules, 26(4), Article 1104. https://doi.org/10.3390%2Fmolecules26041104

5. Karwowska, M., Łaba, S., Szczepański, K. (2021). Food loss and waste in meat sector — w hy the consumption stage generates the most losses? Sustainability, 13(11), Article 6227. https://doi.org/10.3390/su13116227

6. Cenci-Goga, B. T., Iulietto, M. F., Sechi, P., Borgogni, E., Karama, M., Grispoldi, L. (2020). New trends in meat packaging. Microbiology Research, 11(2), 56–67. https://doi.org/10.3390/microbiolres11020010

7. Andrade, B. F., Guimarães, A. S., do Carmo, L. R., Tanaka, M. S., Fontes, P. R., Ramos, A. de L. S. et al. (2024). S-nitrosothiols as nitrite alternatives: Effects on residual nitrite, lipid oxidation, volatile profile, and cured color of restructured cooked ham. Meat Science, 209, Article 109397. https://doi.org/10.1016/j.meatsci.2023.109397

8. Faustman, C., Suman, S. P., Ramanathan, R. (2023). The eating quality of meat: I Color. Chapter in a book: Lawrie's Meat Science. Woodhead Publishing, 2023. https://doi.org/10.1016/B978-0-323-85408-5.00023-6

9. Soro, A. B., Noore, S., Hannon, S., Whyte, P., Bolton, D. J., O’Donnell, C. et al. (2021). Current sustainable solutions for extending the shelf life of meat and marine products in the packaging process. Food Packaging and Shelf Life, 29, Article 100722. https://doi.org/10.1016/j.fpsl.2021.100722

10. Muranko, Ż., Tassell, C., Zeeuw van der Laan, A., Aurisicchio, M. (2021). Characterisation and environmental value proposition of reuse models for fast-moving consumer goods: Reusable packaging and products. Sustainability, 13(5), Article 2609. https://doi.org/10.3390/su13052609

11. Qian, M., Liu, D., Zhang, X., Yin, Z., Ismail, B. B., Ye, X. et al. (2021). A review of active packaging in bakery products: Applications and future trends. Trends in Food Science and Technology, 114, 459–471. https://doi.org/10.1016/j.tifs.2021.06.009

12. Mendes, A. C., Pedersen, G. A. (2021). Perspectives on sustainable food packaging: — Is bio-based plastics a solution? Trends in Food Science and Technology, 112, 839–846. https://doi.org/10.1016/j.tifs.2021.03.049

13. Deshmukh, R. K., Gaikwad, K. K. (2024). Natural antimicrobial and antioxidant compounds for active food packaging applications. Biomass Conversion and Biorefinery, 14(4), 4419–4440. https://doi.org/10.1007/s13399-022-02623-w

14. Deshwal, G. K., Panjagari, N. R., Alam, T. (2019). An overview of paper and paper based food packaging materials: Health safety and environmental concerns. Journal of Food Science and Technology, 56(10), 4391–4403. https://doi.org/10.1007/s13197-019-03950-z

15. Mazzola, N., Sarantópoulos, C. I. G. L. (2019). Packaging design alternatives for meat products. Chapter in a book: Food Processing. IntechOpen, 2019. http://doi.org/10.5772/intechopen.88586

16. Bras, J., Saini, S. (2017). Nanocellulose in functional packaging. Chapter in a book: Cellulose-reinforced nanofibre composites. Woodhead Publishing, 2017. https://doi.org/10.1016/B978-0-08-100957-4.00008-5

17. Ebnesajjad, S. (2012). Plastic films in food packaging: Materials, technology and applications. William Andrew, 2012. https://doi.org/10.1016/C2012-0-00246-3

18. Jan, B., Rizvi, Q. u. e. H., Shams, R., Dar, A. H., Majid, I., Khan, S. A. (2022). Containers for food packaging application. Chapter in a book: Micro-and Nano-containers for Smart Applications. Singapore: Springer Nature Singapore, 2022. https://doi.org/10.1007/978-981-16-8146-2_5

19. Anukiruthika, T., Sethupathy, P., Wilson, A., Kashampur, K., Moses, J. A., Anandharamakrishnan, C. (2020). Multilayer packaging: Advances in preparation techniques and emerging food applications. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1156–1186. https://doi.org/10.1111/1541-4337.12556

20. Ananda, A. P., Manukumar, H. M., Umesha, S., Soumya, G., Priyanka, D., Kumar, A. M. et al. (2017). A relook at food packaging for cost effective by incorporation of novel technologies. Journal of Packaging Technology and Research, 1(2), 67–85. https://doi.org/10.1007/s41783-017-0011-4

21. Liu, Z., Zhang, M., Bhandari, B., Wang, Y. (2017). 3D printing: Printing precision and application in food sector. Trends in Food Science and Technology, 69, 83–94. https://doi.org/10.1016/j.tifs.2017.08.018

22. Andrady, A. L. (2015). Plastics and environmental sustainability. John Wiley and Sons, 2015.

23. Napper, I. E., Thompson, R. C. (2019). Environmental deterioration of biodegradable, oxo-biodegradable, compostable, and conventional plastic carrier bags in the sea, soil, and open-air over a 3-year period. Environmental Science and Technology, 53(9), 4775–4783. https://doi.org/10.1021/acs.est.8b06984

24. Lebreton, L., Andrady, A. (2019). Future scenarios of global plastic waste generation and disposal. Palgrave Communications, 5, Article 6. https://doi.org/10.1057/s41599-018-0212-7

25. Haward, M. (2018). Plastic pollution of the world’s seas and oceans as a contemporary challenge in ocean governance. Nature Communications, 9, Article 667. https://doi.org/10.1038/s41467-018-03104-3

26. European bioplastics. (2021). Bioplastics market development update 2021. Retrieved from https://docs.europeanbioplastics.org/publications/market_data/Report_Bioplastics_Market_Data_2021_short_version.pdf Accessed April 24, 2024

27. Younes, M., Aggett, P., Aguilar, F., Crebelli, R., Filipič, M., Frutos, M. J. et al. (2017). Re‐evaluation of alginic acid and its sodium, potassium, ammonium and calcium salts (E400 — E404) as food additives. EFSA Journal, 15(11), Article 5049, https://doi.org/10.2903/j.efsa.2017.5049

28. Acquavia, M. A., Pascale, R., Martelli, G., Bondoni, M., Bianco, G. (2021). Natural polymeric materials: A solution to plastic pollution from the agro-food sector. Polymers, 13(1), Article 158. https://doi.org/10.3390/polym13010158

29. Krishani, M., Shin, W. Y., Suhaimi, H., Sambudi, N. S. (2023). Development of scaffolds from bio-based natural materials for tissue regeneration applications: A review. Gels, 9(2), Article 100. https://doi.org/10.3390/gels9020100

30. Calva-Estrada, S. J., Jiménez-Fernández, M., Lugo-Cervantes, E. (2019). Protein-based films: Advances in the development of biomaterials applicable to food packaging. Food Engineering Reviews, 11(2), 78–92. https://doi.org/10.1007/s12393-019-09189-w

31. Miteluț, A. C., Popa, E. E., Drăghici, M. C., Popescu, P. A., Popa, V. I., Bujor, O. C. et al. (2021). Latest developments in edible coatings on minimally processed fruits and vegetables: A review. Foods, 10(11), Article 2821. https://doi.org/10.3390%2Ffoods10112821

32. Thombare, N., Kumar, S., Kumari, U., Sakare, P., Yogi, R. K., Prasad, N. et al. (2022). Shellac as a multifunctional biopolymer: A review on properties, applications and future potential. International Journal of Biological Macromolecules, 215, 203–223. https://doi.org/10.1016/j.ijbiomac.2022.06.090

33. Jurić, M., Bandić, L. M., Carullo, D., Jurić, S. (2024). Technological advancements in edible coatings: Emerging trends and applications in sustainable food preservation. Food Bioscience, 58, Article 103835. https://doi.org/10.1016/j.fbio.2024.103835

34. Song, D.-H., Hoa, V. B., Kim, H. W., Khang, S. M., Cho, S.-H., Ham, J.-S. et al. (2021). Edible films on meat and meat products. Coatings, 11(11), Article 1344. https://doi.org/10.3390/coatings11111344

35. Kocira, A., Kozłowicz, K., Panasiewicz, K., Staniak, M., Szpunar-Krok, E., Hortyńska, P. (2021). Polysaccharides as edible films and coatings: Characteristics and influence on fruit and vegetable quality — A review. Agronomy, 11(5), Article 813. https://doi.org/10.3390/agronomy11050813

36. Suhag, R., Kumar, N., Petkoska, A. T., Upadhyay, A. (2020). Film formation and deposition methods of edible coating on food products: A review. Food Research International, 136, Article 109582. https://doi.org/10.1016/j.foodres.2020.109582

37. Gheorghita (Puscaselu), R., Gutt, G., Amariei, S. (2020). The use of edible films based on sodium alginate in meat product packaging: An eco-friendly alternative to conventional plastic materials. Coatings, 10(2), Article 166. https://doi.org/10.3390/coatings10020166

38. Tkaczewska, J. (2020). Peptides and protein hydrolysates as food preservatives and bioactive components of edible films and coatings-A review. Trends in Food Science and Technology, 106, 298–311. https://doi.org/10.1016/j.tifs.2020.10.022

39. Kandasamy, S., Yoo, J., Yun, J., Kang, H. B., Seol, K. H., Kim, H. W. et al. (2021). Application of whey protein-based edible films and coatings in food industries: An updated overview. Coatings, 11(9), Article 1056. https://doi.org/10.3390/coatings11091056

40. Singh, R., Dutt, S., Sharma, P., Sundramoorthy, A. K., Dubey, A., Singh, A. et al. (2023). Future of nanotechnology in food industry: Challenges in processing, packaging, and food safety. Global Challenges, 7(4), Article 2200209. https://doi.org/10.1002/gch2.202200209

41. Mihalca, V., Kerezsi, A. D., Weber, A., Gruber-Traub, C., Schmucker, J., Vodnar, D. C. et al. (2021). Protein-based films and coatings for food industry applications. Polymers, 13(5), Article 769. https://doi.org/10.3390/polym13050769

42. Al-Tayyar, N. A., Youssef, A. M., Al-Hindi, R. (2020). Antimicrobial food packaging based on sustainable bio-based materials for reducing foodborne Pathogens: A review. Food chemistry, 310, Article 125915. https://doi.org/10.1016/j.foodchem.2019.125915

43. Wahab, Y. A., Al-Ani, L. A., Khalil, I., Schmidt, S., Tran, N. N., Escribà-Gelonch, M. et al. (2024). Nanomaterials: A critical review of impact on food quality control and packaging. Food Control, 163, Article 110466. https://doi.org/10.1016/j.foodcont.2024.110466

44. Kontominas, M. G., Badeka, A. V., Kosma, I. S., Nathanailides, C. I. (2021). Recent developments in seafood packaging technologies. Foods, 10(5), Article 940. https://doi.org/10.3390/foods10050940

45. Rashed, M. S., Sobhy, M., Pathania, S. (2022). Active packaging of foods. Chapter in a book: Shelf life and food safety. CRC Press, 2022.

46. Manzoor, A., Ahmad, S., Yousuf, B. (2023). Development and characterization of edible films based on flaxseed gum incorporated with Piper betle extract. International Journal of Biological Macromolecules, 245, Article 125562. https://doi.org/10.1016/j.ijbiomac.2023.125562

47. Sason, G., Nussinovitch, A. (2021). Hydrocolloids for edible films, coatings, and food packaging. Chapter in a book: Handbook of hydrocolloids. Woodhead Publishing, 2021. http://doi.org/10.1016/b978-0-12-820104-6.00023-1

48. Gagaoua, M., Bhattacharya, T., Lamri, M., Oz, F., Dib, A. L., Oz, E. et al. (2021). Green coating polymers in meat preservation. Coatings, 11(11), Article 1379. https://doi.org/10.3390/coatings11111379

49. Sierra, K. (2024). Engineering bioplastics with biopolymers and antimicrobials to improve listeria monocytogenes food safety in ready-to-eat foods over 12-week of storage. Master's thesis.

50. Umaraw, P., Munekata, P. E. S., Verma, A. K., Barba, F. J., Singh, V. P., Kumar, P. et al. (2020). Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends in Food Science and Technology, 98, 10–24. https://doi.org/10.1016/j.tifs.2020.01.032

51. Zhao, Y., Teixeira, J. S., Saldaña, M. D., Gänzle, M. G. (2019). Antimicrobial activity of bioactive starch packaging films against Listeria monocytogenes and reconstituted meat microbiota on ham. International Journal of Food Microbiology, 305, Article 108253. https://doi.org/10.1016/j.ijfoodmicro.2019.108253

52. Farhan, A., Hani, N. M. (2020). Active edible films based on semi-refined κ-carrageenan: Antioxidant and color properties and application in chicken breast packaging. Food Packaging and Shelf Life, 24, Article 100476. https://doi.org/10.1016/j.fpsl.2020.100476

53. Pirsa, S., Shamusi, T. (2019). Intelligent and active packaging of chicken thigh meat by conducting nano structure cellulosepolypyrrole-ZnO film. Materials Science and Engineering: C, 102, 798–809. https://doi.org/10.1016/j.msec.2019.02.021

54. Xiong, Y., Li, S., Warner, R. D., Fang, Z. (2020). Effect of oregano essential oil and resveratrol nanoemulsion loaded pectin edible coating on the preservation of pork loin in modified atmosphere packaging. Food Control, 114, Article 107226. https://doi.org/10.1016/j.foodcont.2020.107226

55. Sani, I. K., Geshlaghi, S. P., Pirsa, S., Asdagh, A. (2021). Composite film based on potato starch/apple peel pectin/ZrO2 nanoparticles/Microencapsulated Zataria multiflora essential oil; Investigation of physicochemical properties and use in quail meat packaging. Food Hydrocolloids, 117, Article 106719. https://doi.org/10.1016/j.foodhyd.2021.106719

56. Bhagath, Y. B., Manjula, K. (2019). Influence of composite edible coating systems on preservation of fresh meat cuts and products: A brief review on their trends and applications. International Food Research Journal, 26(2), 377–392.

57. Souza, V. G. L., Rodrigues, C., Valente, S., Pimenta, C., Pires, J. R. A., Alves, M. M. et al. (2020). Eco-friendly ZnO/Chitosan bionanocomposites films for packaging of fresh poultry meat. Coatings, 10(2), Article 110. https://doi.org/10.3390/coatings10020110

58. Arkoun, M., Daigle, F., Holley, R. A., Heuzey, M. C., Ajji, A. (2018). Chitosan‐based nanofibers as bioactive meat packaging materials. Packaging Technology and Science, 31(4), 185–195. https://doi.org/10.1002/pts.2366

59. Kowalska, H., Marzec, A., Domian, E., Kowalska, J., Ciurzyńska, A., Galus, S. (2021). Edible coatings as osmotic dehydration pretreatment in nutrient‐enhanced fruit or vegetable snacks development: A review. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5641–5674. https://doi.org/10.1111/1541-4337.12837

60. Chen, H., Wang, J., Cheng, Y., Wang, C., Liu, H., Bian, H. et al. (2019). Application of protein-based films and coatings for food packaging: A review. Polymers, 11(12), Article 2039. https://doi.org/10.3390/polym11122039

61. Álvarez-Castillo, E., Felix, M., Bengoechea, C., Guerrero, A. (2021). Proteins from agri-food industrial biowastes or coproducts and their applications as green materials. Foods, 10(5), Article 981. https://doi.org/10.3390/foods10050981

62. Bharti, S. K., Pathak, V., Alam, T., Arya, A., Basak, G., Awasthi, M. G. (2020). Materiality of edible film packaging in muscle foods: A worthwhile conception. Journal of Packaging Technology and Research, 4(1), 117–132. https://doi.org/10.1007/s41783-020-00087-9

63. Hadidi, M., Jafarzadeh, S., Forough, M., Garavand, F., Alizadeh, S., Salehabadi, A. et al. (2022). Plant protein-based food packaging films; recent advances in fabrication, characterization, and applications. Trends in Food Science and Technology, 120, 154–173. https://doi.org/10.1016/j.tifs.2022.01.013

64. Catarino, M. D., Alves-Silva, J. M., Fernandes, R. P., Gonçalves, M. J., Salgueiro, L. R., Henriques, M. F. et al. (2017). Development and performance of whey protein active coatings with Origanum virens essential oils in the quality and shelf life improvement of processed meat products. Food Control, 80, 273–280. https://doi.org/10.1016/j.foodcont.2017.03.054

65. Zając, M., Jamróz, E., Guzik, P., Kulawik, P., Tkaczewska, J. (2021). Active biopolymer films based on furcellaran, whey protein isolate and Borago officinalis extract: Сharacterization and application in smoked pork ham production. Journal of the Science of Food and Agriculture, 101(7), 2884–2891. https://doi.org/10.1002/jsfa.10920

66. Ribeiro Sanches, M. A., Camelo-Silva, C., da Silva Carvalho, C., Rafael de Mello, J., Barroso, N. G., Lopes da Silva Barros, E. et al. (2021). Active packaging with starch, red cabbage extract and sweet whey: Characterization and application in meat. LWT, 135, Article 110275. https://doi.org/10.1016/j.lwt.2020.110275

67. Díaz-Montes, E., Castro-Muñoz, R. (2021). Edible films and coatings as food-quality preservers: An overview. Foods, 10(2), Article 249. https://doi.org/10.3390/foods10020249

68. Bupphatanarat, P., Powtongsook, W., Asawahame, C., Wongtrakul, P. (2020). Application of plant extracts as a preservative in an aqueous gel formulation. Key Engineering Materials, 859, 172–180. http://doi.org/10.4028/www.scientific.net/KEM.859.172

69. Nogueira, G. F., Oliveira, R. A. de, Velasco, J. I., Fakhouri, F. M. (2020). Methods of incorporating plant-derived bioactive compounds into films made with agro-based polymers for application as food packaging: A brief review. Polymers, 12(11), Article 2518. https://doi.org/10.3390/polym12112518

70. Gheorghita (Puscaselu), R., Amariei, S., Norocel, L., Gutt, G. (2020). New edible packaging material with function in shelf life extension: Applications for the meat and cheese industries. Foods, 9(5), Article 562. https://doi.org/10.3390/foods9050562

71. Giatrakou, V. I., Al-Daour, R., Savvaidis, I. N. (2023). Chitosan and hurdle technologies to extend the shelf life or reassure the safety of food formulations and ready-to-eat/cook preparations/meals. Chapter in a book: Chitosan: Novel Applications in Food Systems. Academic Press, 2023. https://doi.org/10.1016/B978-0-12-821663-7.00009-0

72. Fattahian, A., Fazlara, A., Maktabi, S., Bavarsad, N. (2020). The effects of edible chitosan coating containing Cuminum cyminum essential oil on the shelf-life of meat in modified atmosphere packaging. Journal of Food Science and Technology (Iran), 17(104), 79–91. http://doi.org/10.52547/fsct.17.104.79

73. Bazargani-Gilani, B., Aliakbarlu, J., Tajik, H. (2015). Effect of pomegranate juice dipping and chitosan coating enriched with Zataria multiflora Boiss essential oil on the shelf-life of chicken meat during refrigerated storage. Innovative Food Science and Emerging Technologies, 29, 280–287. https://doi.org/10.1016/j.ifset.2015.04.007

74. Sogut, E., Seydim, A. C. (2019). The effects of chitosan-and polycaprolactone-based bilayer films incorporated with grape seed extract and nanocellulose on the quality of chicken breast fillets. LWT, 101, 799–805. https://doi.org/10.1016/j.lwt.2018.11.097

75. Utami, R., Khasanah, L. U., Nasution, M. I. A. (2017). Preservative effects of kaffir lime (Citrus hystrix DC) leaves oleoresin incorporation on cassava starch-based edible coatings for refrigerated fresh beef. International Food Research Journal, 24(4), 1464–1472.

76. Dharmalingam, K., Roy, A., Anandalakshmi, R. (2022). Essential Oils in Active Films and Coatings. Biopolymer‐Based Food Packaging: Innovations and Technology Applications, 422–444. https://doi.org/10.1002/9781119702313.ch13

77. Yemiş, G. P., Candoğan, K. (2017). Antibacterial activity of soy edible coatings incorporated with thyme and oregano essential oils on beef against pathogenic bacteria. Food Science and Biotechnology, 26(4), 1113–1121. https://doi.org/10.1007/s10068-017-0136-9

78. da Rocha, M., Alemán, A., Romani, V. P., López-Caballero, M. E., Gómez-Guillén, M. C., Montero, P. et al. (2018). Effects of agar films incorporated with fish protein hydrolysate or clove essential oil on flounder (Paralichthys orbignyanus) fillets shelf-life. Food Hydrocolloids, 81, 351–363. https://doi.org/10.1016/j.foodhyd.2018.03.017

79. Mojaddar Langroodi, A., Tajik, H., Mehdizadeh, T., Moradi, M., Kia, E. M., Mahmoudian, A. (2018). Effects of sumac extract dipping and chitosan coating enriched with Zataria multiflora Boiss oil on the shelf-life of meat in modified atmosphere packaging. LWT, 98, 372–380. https://doi.org/10.1016/j.lwt.2018.08.063

80. Dalvandi, F., Almasi, H., Ghanbarzadeh, B., Hosseini, H., Khosroshahi, N.K. (2020). Effect of vacuum packaging and edible coating containing black pepper seeds and turmeric extracts on shelf life extension of chicken breast fillets. Journal of Food and Bioprocess Engineering, 3(1), 69–78. https://doi.org/10.22059/jfabe.2020.76631

81. Punia Bangar, S., Chaudhary, V., Thakur, N., Kajla, P., Kumar, M., Trif, M. (2021). Natural antimicrobials as additives for edible food packaging applications: A review. Foods, 10(10), Article 2282. https://doi.org/10.3390/foods10102282

82. Manzoor, A., Khan, S., Dar, A. H., Pandey, V. K., Shams, R., Ahmad, S. et al. (2023). Recent insights into green antimicrobial packaging towards food safety reinforcement: A review. Journal of Food Safety, 43(4), Article e13046. https://doi.org/10.1111/jfs.13046


Review

For citations:


Saeed K., Ali Z. Biodegradable meat packaging: Microbial safety and control for environmental pollution. Theory and practice of meat processing. 2024;9(2):169-179. https://doi.org/10.21323/2414-438X-2024-9-2-169-179

Views: 457


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)