Preview

Theory and practice of meat processing

Advanced search

The role of enzymes in the formation of meat and meat products

https://doi.org/10.21323/2414-438X-2024-9-1-40-52

Abstract

The meat industry is one of the most dynamic and competitive sectors of the food industry. As the global population keeps on growing and the demand for protein does the same, the consumers define ever higher standards of quality for the meat producers. One of the key quality criteria is the tenderness and juiciness of meat, which directly affects its taste and texture characteristics. In order to satisfy the expectations of the modern consumers and to ensure the stable quality of the meat product, meat processing enterprises actively introduce the innovative technologies. In recent decades, proteolytic enzymes have been increasingly used to improve the quality characteristics of the meat products, which is a more progressive method in comparison with to mechanical methods of processing due to less impact on other consumer properties. This article overviews the role and importance of enzymes in the meat industry. We will consider various aspects of the application of these enzymes for the meat products, their effect on the level of tenderness, juiciness and other characteristics of meat, as well as prospects for the further development of their using

About the Authors

D. V. Khvostov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Daniil V. Khvostov, Candidate of Technical Sciences, Researcher, Laboratory “Molecular Biology and Bioinformatics”

26, Talalikhina Str., Moscow, 109316

Tel.: +7–495–676–95–11 (402)



A. Yu. Khryachkova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Anastasia Yu. Khryachkova, Research Engineer, Laboratory “Molecular Biology and Bioinformatics”

26, Talalikhina Str., Moscow, 109316



M. Yu. Minaev
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Mihail Yu. Minaev, Candidate of Technical Sciences, Head of the “Laboratory of Molecular Biology and Bioinformatics”

26, Talalikhina Str., Moscow, 109316

Tel.: +7–495–676–95–11 (401)



References

1. Ashie, I.N.A., Sorensen, T.L., Nielsen, P.M. (2002). Effects of papain and a microbial enzyme on meat proteins and beef tenderness. Journal of Food Science, 67(6), 2138–2142. https://doi.org/10.1111/j.1365-2621.2002.tb09516.x.

2. Huff Lonergan, E., Zhang, W., Lonergan, S. M. (2010). Biochemistry of postmortem muscle — lessons on mechanisms of meat tenderization. Meat Science, 86(1), 184–195. https://doi.org/10.1016/j.meatsci.2010.05.004

3. Aaslyng, M. D., Meinert, L. (2017). Meat flavour in pork and beef — From animal to meal. Meat Science, 132, 112–117. https://doi.org/10.1016/j.meatsci.2017.04.012 4. Lepetit, J., Culioli, J. (1994). Mechanical properties of meat. Meat Science, 36(1), 203–237. https://doi.org/10.1016/0309-1740(94)90042-6

4. Mullen, A. M., Álvarez, C., Zeugolis, D. I., Henchion, M., O’Neill, E., Drummond, L. (2017). Alternative uses for coproducts: Harnessing the potential of valuable compounds from meat processing chains. Meat Science, 132, 90–98. https://doi.org/10.1016/j.meatsci.2017.04.243

5. Wang, L.-L., Han, L., Ma, X.-L., Yu, Q.-L., Zhao, S.-N. (2017). Effect of mitochondrial apoptotic activation through the mitochondrial membrane permeability transition pore on yak meat tenderness during postmortem aging. Food Chemistry, 234, 323–331. https://doi.org/10.1016/j.foodchem.2017.04.185

6. Lana, A., Zolla, L. (2016). Proteolysis in meat tenderization from the point of view of each single protein: A proteomic perspective. Journal of Proteomics, 147, 85–97. https://doi.org/10.1016/j.jprot.2016.02.011

7. Hutchison, C. L., Mulley, R. C., Wiklund, E., Flesch, J. S., Sims, K. (2014). Effect of pelvic suspension on the instrumental meat quality characteristics of red deer (Cervus elaphus) and fallow deer (Dama dama) venison. Meat Science, 98(2), 104–109. https://doi.org/10.1016/j.meatsci.2014.05.010

8. Pietrasik, Z., Shand, P. J. (2004). Effect of blade tenderization and tumbling time on the processing characteristics and tenderness of injected cooked roast beef. Meat Science, 66(4), 871–879. https://doi.org/10.1016/j.meatsci.2003.08.009

9. Descriptive Designation for Needle- or Blade-Tenderized (Mechanically Tenderized) Beef Products. Retrieved from https://www.fsis.usda.gov/policy/federal-register-rulemaking/federal-register-rules/descriptive-designation-needleor-blade Accessed January 15, 2024.

10. Minaev, M. Yu., Eremtsova, A. A. (2016). New aspects of the choice of peptidases families M4 and M9 for the enzymatic treatment of raw meat and collagen-rich raw meat. Vsyo o Myase, 2, 30–33. (In Russian)

11. Bekhit, A. A., Hopkins, D. L., Geesink, G., Bekhit, A. A., Franks, P. (2014). Exogenous Proteases for Meat Tenderization. Critical Reviews in Food Science and Nutrition, 54(8), 1012–1031. https://doi.org/10.1080/10408398.2011.623247

12. Pietrasik, Z., Shand, P. J. (2011). Effects of moisture enhancement, enzyme treatment, and blade tenderization on the processing characteristics and tenderness of beef semimembranosus steaks. Meat Science, 88(1), 8–13. https://doi.org/10.1016/j.meatsci.2010.11.024

13. Hughes, J. M., Oiseth, S. K., Purslow, P. P., Warner, R. D. (2014). A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Science, 98(3), 520–532. https://doi.org/10.1016/j.meatsci.2014.05.022

14. Madhusankha, G. D. M. P., Thilakarathna, R. C. N. (2021). Meat tenderization mechanism and the impact of plant exogenous proteases: A review. Arabian Journal of Chemistry, 14(2), 102967. https://doi.org/10.1016/j.arabjc.2020.102967

15. Kemp, C. M., Parr, T. (2008). The effect of recombinant caspase 3 on myofibrillar proteins in porcine skeletal muscle. Animal, 2(8), 1254–1264. https://doi.org/10.1017/S1751731108002310

16. Koohmaraie, M., Geesink, G. H. (2006). Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the calpain system. Meat Science, 74(1), 34–43. https://doi.org/10.1016/j.meatsci.2006.04.025

17. Ouali, A., Herrera-Mendez, C. H., Coulis, G., Becila, S., Boudjellal, A., Aubry, L., Sentandreu, M. A. (2006). Revisiting the conversion of muscle into meat and the underlying mechanisms. Meat Science, 74(1), 44–58. https://doi.org/10.1016/j.meatsci.2006.05.010

18. Kemp, C. M., Sensky, P. L., Bardsley, R. G., Buttery, P. J., Parr, T. (2010). Tenderness — An enzymatic view. Meat Science, 84(2), 248–256. https://doi.org/10.1016/j.meatsci.2009.06.008

19. Bhat, Z. F., Morton, J. D., Mason, S. L., Bekhit, A. E.-D. A. (2018). Role of calpain system in meat tenderness: A review. Food Science and Human Wellness, 7(3), 196–204. https://doi. org/10.1016/j.fshw.2018.08.002

20. Huff-Lonergan, E., Mitsuhashi, T., Beekman, D. D., Parrish, F. C., Jr., Olson, D. G., Robson, R. M. (1996). Proteolysis of specific muscle structural proteins by µ-calpain at low pH and temperature is similar to degradation in postmortem bovine muscle. Journal of Animal Science, 74(5), 993–1008. https://doi.org/10.2527/1996.745993x

21. Koohmaraie, M., Whipple, G., Kretchmar, D. H., Crouse, J. D., Mersmann, H. J. (1991). Postmortem proteolysis in longissimus muscle from beef, lamb and pork carcasses. Journal of Animal Science, 69(2), 617–624. https://doi. org/10.2527/1991.692617x

22. Kent, M. P., Spencer, M. J., Koohmaraie, M. (2004). Postmortem proteolysis is reduced in transgenic mice overexpressing calpastatin. Journal of Animal Science, 82(3), 794–801. https://doi.org/10.2527/2004.823794x

23. Geesink, G. H., Kuchay, S., Chishti, A. H., Koohmaraie, M. (2006). μ-Calpain is essential for postmortem proteolysis of muscle proteins. Journal of Animal Science, 84(10), 2834– 2840. https://doi.org/10.2527/jas.2006-122

24. Wheeler, T. L., Crouse, J. D., Koohmaraie, M. (1992). The effect of postmortem time of injection and freezing on the effectiveness of calcium chloride for improving beef tenderness1. Journal of Animal Science, 70(11), 3451–3457. https://doi.org/10.2527/1992.70113451x

25. Sentandreu, M.A., Coulis, G., Ouali, A. (2002). Role of muscle endopeptidases and their inhibitors in meat tenderness. Trends in Food Science and Technology, 13(12), 400–421. https://doi.org/10.1016/S0924-2244(02)00188-7

26. Mikami, M., Whiting, A. H., Taylor, M. A. J., Maciewicz, R. A., Etherington, D. J. (1987). Degradation of myofibrils from rabbit, chicken and beef by cathepsin l and lysosomal lysates. Meat Science, 21(2), 81–97. https://doi.org/10.1016/0309-1740(87)90022-2

27. Becila, S., Herrera-Mendez, C. H., Coulis, G., Labas, R., Astruc, T., Picard, B. et al. (2010). Postmortem muscle cells die through apoptosis. European Food Research and Technology, 231(3), 485–493. https://doi.org/10.1007/s00217-010-1296-5

28. Herrera-Mendez, C. H., Becila, S., Blanchet, X., Pelissier, P., Delourme, D., Coulis, G. et al. (2009). Inhibition of human initiator caspase 8 and effector caspase 3 by cross-class inhibitory bovSERPINA3–1 and A3–3. FEBS Letters, 583(17), 2743–2748. https://doi.org/10.1016/j.febslet.2009.07.055

29. Wang, K. K. W., Posmantur, R., Nadimpalli, R., Nath, R., Mohan, P., Nixon, R. A. et al. (1998). Caspase-mediated fragmentation of calpain inhibitor protein calpastatin during apoptosis. Archives of Biochemistry and Biophysics, 356(2), 187–196. https://doi.org/10.1006/abbi.1998.0748

30. Pomponio, L., Ertbjerg, P. (2012). The effect of temperature on the activity of μ- and m-calpain and calpastatin during postmortem storage of porcine longissimus muscle. Meat Science, 91(1), 50–55. https://doi.org/10.1016/j.meatsci.2011.12.005

31. Christensen, L., Ertbjerg, P., Aaslyng, M. D., Christensen, M. (2011). Effect of prolonged heat treatment from 48 °C to 63 °C on toughness, cooking loss and color of pork. Meat Science, 88(2), 280–285. https://doi.org/10.1016/j.meatsci.2010.12.035

32. Zou, B., Jia, F., Ji, L., Li, X., Dai, R. (2023). Effects of mitochondria on postmortem meat quality: Characteristic, isolation, energy metabolism, apoptosis and oxygen consumption. Critical Reviews in Food Science and Nutrition, 1–24. https://doi.org/10.1080/10408398.2023.2235435

33. Warner, R. D., Wheeler, T. L., Ha, M., Li, X., Bekhit, A. E.- D., Morton, J. et al. (2022). Meat tenderness: Advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Science, 185, Article 108657. https://doi. org/10.1016/j.meatsci.2021.108657

34. Veiseth, E., Shackelford, S. D., Wheeler, T. L., Koohmaraie, M. (2004). Factors regulating lamb longissimus tenderness are affected by age at slaughter. Meat Science, 68(4), 635–640. https://doi.org/10.1016/j.meatsci.2004.05.015

35. Marino, R., della Malva, A., Albenzio, M. (2015). Proteolytic changes of myofibrillar proteins in Podolian meat during aging: focusing on tenderness1. Journal of Animal Science, 93(3), 1376–1387. https://doi.org/10.2527/jas.2014-8351

36. Renand, G., Picard, B., Touraille, C., Berge, P., Lepetit, J. (2001). Relationships between muscle characteristics and meat quality traits of young Charolais bulls. Meat Science, 59(1), 49–60. https://doi.org/10.1016/S0309-1740(01)00051-1

37. Smith, R. D., Nicholson, K. L., Nicholson, J. D. W., Harris, K. B., Miller, R. K., Griffin, D. B., Savell, J. W. (2008). Dry versus wet aging of beef: Retail cutting yields and consumer palatability evaluations of steaks from US Choice and US Select short loins. Meat Science, 79(4), 631–639. https://doi.org/10.1016/j.meatsci.2007.10.028

38. Offer, G., Knight, P. J., Jeacocke, R. E., Almond, R., Cousins, T., Elsey, J. et al. Purslow, P. P. (1989). The Structural basis of the water-holding, appearance and toughness of meat and meat products. Food Structure, 8(1), Article 17.

39. Gul, A., Siddiqui, M., Arain, H., Khan, S., Khan, H., Ishrat, U. (2021). Extraction, partial purification and characterization of bromelain from pineapple (Ananas Comosus) crown, core and peel waste. Brazilian Archives of Biology and Technology, 64. Article e21200639. https://doi.org/10.1590/1678-4324-2021200639

40. Ha, M., Bekhit, A. E.-D. A., Carne, A., Hopkins, D. L. (2012). Characterisation of commercial papain, bromelain, actinidin and zingibain protease preparations and their activities toward meat proteins. Food Chemistry, 134(1), 95–105. https://doi.org/10.1016/j.foodchem.2012.02.071

41. Morellon-Sterling, R., El-Siar, H., Tavano, O. L., BerenguerMurcia, Á., Fernández-Lafuente, R. (2020). Ficin: A protease extract with relevance in biotechnology and biocatalysis. International Journal of Biological Macromolecules, 162, 394– 404. https://doi.org/10.1016/j.ijbiomac.2020.06.144

42. Arshad, M. S., Kwon, J.-H., Imran, M., Sohaib, M., Aslam, A., Nawaz, I. et al. (2016). Plant and bacterial proteases: A key towards improving meat tenderization, a mini review. Cogent Food and Agriculture, 2(1), Article 1261780. https://doi.org/10.1080/23311932.2016.1261780

43. Zhang, B., Sun, Q., Liu, H.-J., Li, S.-Z., Jiang, Z.-Q. (2017). Characterization of actinidin from Chinese kiwifruit cultivars and its applications in meat tenderization and production of angiotensin I-converting enzyme (ACE) inhibitory peptides. LWT, 78, 1–7. https://doi.org/10.1016/j.lwt.2016.12.012

44. Gong, X., Morton, J. D., Bhat, Z. F., Mason, S. L., Bekhit, A. E.-D. A. (2020). Comparative efficacy of actinidin from green and gold kiwi fruit extract on in vitro simulated protein digestion of beef Semitendinosus and its myofibrillar protein fraction. International Journal of Food Science and Technology, 55(2), 742–750. https://doi.org/10.1111/ijfs.14345

45. Wang, J., Liu, H., Wang, H., Cui, M., Jin, Q., Jin, T. et al. (2016). Isolation and characterization of a protease from the Actinidia arguta fruit for improving meat tenderness. Food Science and Biotechnology, 25(4), 1059–1064. https://doi.org/10.1007/s10068-016-0171-y

46. Gagaoua, M., Hafid, K., Hoggas, N. (2016). Data in support of three phase partitioning of zingibain, a milk-clotting enzyme from Zingiber officinale Roscoe rhizomes. Data in Brief, 6, 634–639. https://doi.org/10.1016/j.dib.2016.01.014

47. Sullivan, G. A., Calkins, C. R. (2010). Application of exogenous enzymes to beef muscle of high and low-connective tissue. Meat Science, 85(4), 730–734. https://doi.org/10.1016/j.meatsci.2010.03.033

48. Qihe, C., Guoqing, H., Yingchun, J., Hui, N. (2006). Effects of elastase from a Bacillus strain on the tenderization of beef meat. Food Chemistry, 98(4), 624–629. https://doi. org/10.1016/j.foodchem.2005.06.043

49. Takagi, H., Kondou, M., Hisatsuka, T., Nakamori, S., Tsai, Y. C., Yamasaki, M. (1992). Effects of an alkaline elastase from an alkalophilic Bacillus strain on the tenderization of beef meat. Journal of Agricultural and Food Chemistry, 40(12), 2364– 2368. https://doi.org/10.1021/jf00024a008

50. Sorapukdee, S., Sumpavapol, P., Benjakul, S., Tangwatcharin, P. (2020). Collagenolytic proteases from Bacillus subtilis B13 and B. siamensis S6 and their specificity toward collagen with low hydrolysis of myofibrils. LWT, 126, Article 109307. https://doi.org/10.1016/j.lwt.2020.109307

51. Allen Foegeding, E., Larick, D. K. (1986). Tenderization of beef with bacterial collagenase. Meat Science, 18(3), 201–214. https://doi.org/10.1016/0309-1740(86)90034-3

52. Zhao, G.-Y., Zhou, M.-Y., Zhao, H.-L., Chen, X.-L., Xie, B.-B., Zhang, X.-Y. et al. (2012). Tenderization effect of cold-adapted collagenolytic protease MCP-01 on beef meat at low temperature and its mechanism. Food Chemistry, 134(4), 1738– 1744. https://doi.org/10.1016/j.foodchem.2012.03.118

53. Minaev, M., Makhova, A. A. (2019). Recombinant metalloprotease as a perspective enzyme for meat tenderization. Potravinarstvo Slovak Journal of Food Sciences, 13(1), 628–633. https://doi.org/10.5219/1087

54. Souza, T. S. P. d., de Andrade, C. J., Koblitz, M. G. B., Fai, A. E. C. (2023). Microbial peptidase in food processing: Current state of the art and future trends. Catalysis Letters, 153(1), 114–137. https://doi.org/10.1007/s10562-022-03965-w

55. Benito María, J., Rodríguez, M., Núñez, F., Asensio Miguel, A., Bermúdez María, E., Córdoba Juan, J. (2002). Purification and Characterization of an Extracellular Protease from Penicillium chrysogenum Pg222 Active against Meat Proteins. Applied and Environmental Microbiology, 68(7), 3532–3536. https://doi.org/10.1128/AEM.68.7.3532-3536.2002

56. Weiss, J., Gibis, M., Schuh, V., Salminen, H. (2010). Advances in ingredient and processing systems for meat and meat products. Meat Science, 86(1), 196–213. https://doi.org/10.1016/j.meatsci.2010.05.008

57. Lepetit, J. (2008). Collagen contribution to meat toughness: Theoretical aspects. Meat Science, 80(4), 960–967. https://doi. org/10.1016/j.meatsci.2008.06.016

58. Abdel-Naeem, H. H. S., Mohamed, H. M. H. (2016). Improving the physico-chemical and sensory characteristics of camel meat burger patties using ginger extract and papain. Meat Science, 118, 52–60. https://doi.org/10.1016/j.meatsci.2016.03.021

59. Garg, V., Mendiratta, S. K. (2006). Studies on tenderization and preparation of enrobed pork chunks in microwave oven. Meat Science, 74(4), 718–726. https://doi.org/10.1016/j.meatsci.2006.06.003

60. Fernández-Lucas, J., Castañeda, D., Hormigo, D. (2017). New trends for a classical enzyme: Papain, a biotechnological success story in the food industry. Trends in Food Science and Technology, 68, 91–101. https://doi.org/10.1016/j.tifs.2017.08.017

61. Tantamacharik, T., Carne, A., Agyei, D., Birch, J., Bekhit, A. E.-D. A. (2018). Use of Plant Proteolytic Enzymes for Meat Processing. Chapter in a book: Biotechnological Applications of Plant Proteolytic Enzymes. Cham: Springer International Publishing, 2018. https://doi.org/10.1007/978-3-319-97132-2_3

62. Gagaoua, M., Dib, A. L., Lakhdara, N., Lamri, M., Botineştean, C., Lorenzo, J. M. (2021). Artificial meat tenderization using plant cysteine proteases. Current Opinion in Food Science, 38, 177–188. https://doi.org/10.1016/j.cofs.2020.12.002

63. Borrajo, P., Pateiro, M., Gagaoua, M., Franco, D., Zhang, W., Lorenzo, J. M. (2020). Evaluation of the antioxidant and antimicrobial activities of porcine liver protein hydrolysates obtained using alcalase, bromelain, and papain. Applied Sciences, 10(7), Article 2290. https://doi.org/10.3390/app10072290

64. Bhat, Z. F., Morton, J. D., Mason, S. L., Bekhit, A. E.-D. A. (2018). Applied and Emerging Methods for Meat Tenderization: A Comparative Perspective. Comprehensive Reviews in Food Science and Food Safety, 17(4), 841–859. https://doi.org/10.1111/1541-4337.12356

65. Fogle, D. R., Plimpton, R. F., Ockerman, H. W., Jarenback, L., Persson, T. (1982). Tenderization of beef: Effect of enzyme, enzyme level, and cooking method. Journal of Food Science, 47(4), 1113–1118. https://doi.org/10.1111/j.1365-2621.1982.tb07629.x

66. Chaurasiya, R. S., Sakhare, P. Z., Bhaskar, N., Hebbar, H. U. (2015). Efficacy of reverse micellar extracted fruit bromelain in meat tenderization. Journal of Food Science and Technology, 52(6), 3870–3880. https://doi.org/10.1007/s13197-014-1454-z

67. Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A. et al. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16–30. https://doi.org/10.17113/ftb.56.01.18.5491

68. Ha, M., Bekhit, A. E.-D., Carne, A., Hopkins, D. L. (2013). Comparison of the proteolytic activities of new commercially available bacterial and fungal proteases toward meat proteins. Journal of Food Science, 78(2), 170–177. https://doi.org/10.1111/1750-3841.12027

69. Sun, Q., Chen, F., Geng, F., Luo, Y., Gong, S., Jiang, Z. (2018). A novel aspartic protease from Rhizomucor miehei expressed in Pichia pastoris and its application on meat tenderization and preparation of turtle peptides. Food Chemistry, 245, 570–577. https://doi.org/10.1016/j.foodchem.2017.10.113

70. Razzaq, A., Shamsi, S., Ali, A., Ali, Q., Sajjad, M., Malik, A., Ashraf, M. (2019). Microbial proteases applications. Frontiers in Bioengineering and Biotechnology, 7, Article 110. https://doi.org/10.3389/fbioe.2019.00110

71. Mehta, P. K., Sehgal, S. (2019). Microbial Enzymes in Food Processing. Chapter in a book: Biocatalysis: Enzymatic Basics and Applications. Cham: Springer International Publishing, 2019. http://doi.org/10.1007/978-3-030-25023-2_13

72. Ryder, K., Ha, M., Bekhit, A. E.-D., Carne, A. (2015). Characterisation of novel fungal and bacterial protease preparations and evaluation of their ability to hydrolyse meat myofibrillar and connective tissue proteins. Food Chemistry, 172, 197–206. https://doi.org/10.1016/j.foodchem.2014.09.061

73. Kim, M., Hamilton, S. E., Guddat, L. W., Overall, C. M. (2007). Plant collagenase: Unique collagenolytic activity of cysteine proteases from ginger. Biochimica et Biophysica Acta (BBA) — General Subjects, 1770(12), 1627–1635. https://doi.org/10.1016/j.bbagen.2007.08.003

74. Wu, S., Zhou, X., Jin, Z., Cheng, H. (2023). Collagenases and their inhibitors: A review. Collagen and Leather, 5(1), 19. https://doi.org/10.1186/s42825-023-00126-6

75. Van Wart, H. E. (2013). Clostridium Collagenases. Chapter in a book: Handbook of Proteolytic Enzymes (Third Edition). Academic Press, 2013. https://doi.org/10.1016/B978-0-12-382219-2.00126-5

76. Fukushima, J., Shimura, Y., Okuda, K. (2013). Vibrio Collagenase. Chapter in a book: Handbook of Proteolytic Enzymes (Third Edition). Academic Press, 2013.

77. Zhang, Y.-Z., Ran, L.-Y., Li, C.-Y., Chen, X.-L. (2015). Diversity, Structures, and Collagen-Degrading Mechanisms of Bacterial Collagenolytic Proteases. Applied and Environmental Microbiology, 81(18), 6098–6107. https://doi.org/10.1128/ AEM.00883-15

78. Mageswari, A., Subramanian, P., Chandrasekaran, S., Karthikeyan, S., Gothandam, K. M. (2017). Systematic functional analysis and application of a cold-active serine protease from a novel Chryseobacterium sp. Food Chemistry, 217, 18–27. https://doi.org/10.1016/j.foodchem.2016.08.064

79. Chanalia, P., Gandhi, D., Attri, P., Dhanda, S. (2018). Extraction, purification and characterization of low molecular weight Proline iminopeptidase from probiotic L. plantarum for meat tenderization. International Journal of Biological Macromolecules, 109, 651–663. https://doi.org/10.1016/j.ijbiomac.2017.12.092

80. Zhu, F., Jiang, T., Wu, B., He, B. (2018). Enhancement of Z-aspartame synthesis by rational engineering of metalloprotease. Food Chemistry, 253, 30–36. https://doi.org/10.1016/j. foodchem.2018.01.108

81. Murthy, P. S., Kusumoto, K.-I. (2015). Acid protease production by Aspergillus oryzae on potato pulp powder with emphasis on glycine releasing activity: A benefit to the food industry. Food and Bioproducts Processing, 96, 180–188. https://doi.org/10.1016/j.fbp.2015.07.013

82. Ke, Y., Huang, W.-Q., Li, J.-z., Xie, M.-q., Luo, X.-c. (2012). Enzymatic Characteristics of a Recombinant Neutral Protease I (rNpI) from Aspergillus oryzae Expressed in Pichia pastoris. Journal of Agricultural and Food Chemistry, 60(49), 12164–12169. https://doi.org/10.1021/jf303167r

83. Liu, Y., Zhang, T., Zhang, Z., Sun, T., Wang, J., Lu, F. (2014). Improvement of cold adaptation of Bacillus alcalophilus alkaline protease by directed evolution. Journal of Molecular Catalysis B: Enzymatic, 106, 117–123. https://doi.org/10.1016/j. molcatb.2014.05.005

84. Zhao, H.-Y., Feng, H. (2018). Engineering Bacillus pumilus alkaline serine protease to increase its low-temperature proteolytic activity by directed evolution. BMC Biotechnology, 18(1), Article 34. https://doi.org/10.1186/s12896-018-0451-0

85. Nishimura, T., Kato, H. (1988). Taste of free amino acids and peptides. Food Reviews International, 4(2), 175–194. https://doi.org/10.1080/87559128809540828

86. Suzuki, A., Homma, N., Fukuda, A., Hirao, K., Uryu, T., Ikeuchi, Y. (1994). Effects of high pressure treatment on the flavour-related components in meat. Meat Science, 37(3), 369–379. https://doi.org/10.1016/0309-1740(94)90053-1

87. Bolumar, T., Sanz, Y., Aristoy, M. C., Toldrá, F. (2005). Protease B from Debaryomyces hansenii: Purification and biochemical properties. International Journal of Food Microbiology, 98(2), 167–177. https://doi.org/10.1016/j.ijfoodmicro.2004.05.021

88. Ockerman, H. W., Sánchez, F. J. C., Mariscal, M. O., Serrano, A. M. M., Muñoz, M. C. T., León-Crespo, F. (2001). Influence of temperature on proteolytic activity of indigenous spanish molds in meat products. Journal of Muscle Foods, 12(4), 263– 273. https://doi.org/10.1111/j.1745-4573.2001.tb00309.x

89. Bruna, J. M., Fernández, M., Hierro, E. M., Ordóñez, J. A., de la Hoz, L. (2000). Combined use of Pronase E and a fungal extract (Penicillium aurantiogriseum) to potentiate the sensory characteristics of dry fermented sausages. Meat Science, 54(2), 135–145. https://doi.org/10.1016/S0309-1740(99)00076-5

90. Toledo, V. M., Selgas, M. D., Casas, M. C., García, M. L., Ordóñez, J. A. (1997). Effect of selected mould strains on proteolysis in dry fermented sausages. Zeitschrift für Lebensmitteluntersuchung und -Forschung A, 204(5), 385–390. https://doi.org/10.1007/s002170050095

91. Trigueros, G., García, M. L., Casas, C., Ordóñez, J. A., Selgas, M. D. (1995). Proteolytic and lipolytic activities of mould strains isolated from Spanish dry fermented sausages. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 201(3), 298–302. https://doi.org/10.1007/BF01193008

92. Benito, M. J., Martín, A., Aranda, E., Pérez-Nevado, F., RuizMoyano, S., Córdoba, M. G. (2007). Characterization and selection of autochthonous lactic acid bacteria isolated from traditional Iberian dry-fermented Salchichón and Chorizo sausages. Journal of Food Science, 72(6), M193-M201. https://doi.org/10.1111/j.1750-3841.2007.00419.x

93. Núñez, F., Rodríguez, M. M., Córdoba, J. J., Bermúdez, M. E., Asensio, M. A. (1996). Yeast population during ripening of drycured Iberian ham. International Journal of Food Microbiology, 29(2), 271–280. https://doi.org/10.1016/0168-1605(95)00037-2

94. Rodríguez, M., Núñez, F., Córdoba, J. J., Bermúdez, M. E., Asensio, M. A. (1998). Evaluation of proteolytic activity of micro‐organisms isolated from dry cured ham. Journal of Applied Microbiology, 85(5), 905–912. https://doi.org/10.1046/ j.1365-2672.1998.00610.x

95. Kanaji, T., Ozaki, H., Takao, T., Kawajiri, H., Ide, H., Motoki, M., Shimonishi, Y. (1993). Primary structure of microbial transglutaminase from Streptoverticillium sp. strain s-8112. Journal of Biological Chemistry, 268(16), 11565–11572. https://doi.org/10.1016/S0021-9258(19)50238-1

96. Yokoyama, K., Nio, N., Kikuchi, Y. (2004). Properties and applications of microbial transglutaminase. Applied Microbiology and Biotechnology, 64(4), 447–454. https://doi.org/10.1007/s00253-003-1539-5

97. Kieliszek, M., Misiewicz, A. (2014). Microbial transglutaminase and its application in the food industry. A review. Folia Microbiologica, 59(3), 241–250. https://doi.org/10.1007/s12223-013-0287-x

98. “ACTIVA” TG preparation is an enzyme that catalyses the polymerisation and cross linking of proteins. Retrieved from https://www.ajinomoto.com.my/brands#para-264 Accessed January 15, 2024.

99. Jira, W., Sadeghi-Mehr, A., Brüggemann, D. A., Schwägele, F. (2017). Production of dry-cured formed ham with different concentrations of microbial transglutaminase: Mass spectrometric analysis and sensory evaluation. Meat Science, 129, 81–87. https://doi.org/10.1016/j.meatsci.2017.02.021

100. Santhi, D., Kalaikannan, A., Malairaj, P., Arun Prabhu, S. (2017). Application of microbial transglutaminase in meat foods: A review. Critical Reviews in Food Science and Nutrition, 57(10), 2071–2076. https://doi.org/10.1080/10408398.2014.945990

101. Nielsen, G. S., Petersen, B. R., Møller, A. J. (1995). Impact of salt, phosphate and temperature on the effect of a transglutaminase (F XIIIa) on the texture of restructured meat. Meat Science, 41(3), 293–299. https://doi.org/10.1016/0309-1740(94)00002-O

102. BfR (2011). Transglutaminase in meat products. Retrieved from http://www.bfr.bund.de/cm/349/transglutaminase-inmeat-products.pdf Accessed January 15, 2024. 104.Jira, W., Schwägele, F. (2017). A sensitive high performance liquid chromatography–tandem mass spectrometry method for the detection of microbial transglutaminase in different types of restructured meat. Food Chemistry, 221, 1970–1978. https://doi.org/10.1016/j.foodchem.2016.11.148

103. Jira, W., Behnke, T., Brockmeyer, J., Frost, K., Hiller, E., Möllers, M. et al. (2022). Inter-laboratory validation of an HPLC–MS/ MS method for the detection of microbial transglutaminase in meat and meat products. Food Analytical Methods, 15(8), 2323–2334. https://doi.org/10.1007/s12161-022-02289-0

104. Li, X., Li, S., Liang, X., McClements, D. J., Liu, X., Liu, F. (2020). Applications of oxidases in modification of food molecules and colloidal systems: Laccase, peroxidase and tyrosinase. Trends in Food Science and Technology, 103, 78–93. https://doi.org/10.1016/j.tifs.2020.06.014

105. Mayolo-Deloisa, K., González-González, M., Rito-Palomares, M. (2020). Laccases in food industry: Bioprocessing, potential industrial and biotechnological applications. Frontiers in Bioengineering and Biotechnology, 8 Article 222. https://doi.org/10.3389/fbioe.2020.00222

106. Lantto, R., Puolanne, E., Kruus, K., Buchert, J., Autio, K. (2007). Tyrosinase-aided protein cross-linking: Effects on gel formation of chicken breast myofibrils and texture and water-holding of chicken breast meat homogenate gels. Journal of Agricultural and Food Chemistry, 55(4), 1248–1255. https://doi.org/10.1021/jf0623485

107. Jus, S., Stachel, I., Fairhead, M., Meyer, M., Thöny-Meyer, L., Guebitz, G. (2012). Enzymatic cross-linking of gelatine with laccase and tyrosinase. Biocatalysis and Biotransformation, 30, 86–95. https://doi.org/10.3109/10242422.2012.646036

108. Vasić, K., Knez, Ž., Leitgeb, M. (2023). Transglutaminase in foods and biotechnology. International Journal of Molecular Sciences, 24(15), Article 12402. https://doi.org/10.3390/ijms241512402

109. Mohd Azmi, S. I., Kumar, P., Sharma, N., Sazili, A. Q., Lee, S.-J., Ismail-Fitry, M. R. (2023). Application of plant proteases in meat tenderization: Recent trends and future prospects. Foods, 12(6), Article 1336. https://doi.org/10.3390/foods12061336

110. Additives in Meat and Poultry Products. Retrieved from https://www.fsis.usda.gov/food-safety/safe-food-handlingand-preparation/food-safety-basics/additives-meat-andpoultry Accessed January 15, 2024.

111. McKeith, F. K., Brewer, M. S., Bruggen, K. A. (1994). Effects of enzyme applications on sensory, chemical and processing characteristics of beef steaks and roasts. Journal of Muscle Foods, 5(2), 149–164. https://doi.org/10.1111/j.1745-4573.1994.tb00527.x


Review

For citations:


Khvostov D.V., Khryachkova A.Yu., Minaev M.Yu. The role of enzymes in the formation of meat and meat products. Theory and practice of meat processing. 2024;9(1):40-52. https://doi.org/10.21323/2414-438X-2024-9-1-40-52

Views: 1121


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)