Preview

Theory and practice of meat processing

Advanced search

Analysis of antioxidant potential and study of the features of the microstructure in certain types of spices and herbs used in the meat processing industry

https://doi.org/10.21323/2414-438X-2023-8-4-289-301

Abstract

Spices and herbs are widely used in the meat processing industry to improve the taste and flavor of the food products. They contain a wide range of essential oils and biologically active components possessing antioxidant potential. Surge of spices consumption leads to their adulteration; at the same time, species identification is complex and requires increased knowledge about the peculiarities of their structure. This study researched the antioxidant potential (AOP) of six spices and three fragrant herbs, defined their structure and histological parameters of their identification. To assess AOP, total antioxidant capacity (TAC) was defined using the methods of Oxygen Radical Absorbance Capacity (ORAC) and free radical DPPH, and the main classes of AO were identified with the help of qualitative reactions, microstructure was analyzed via three staining methods. Among six classes of AO the flavonoids were found in all extracts. All of four AO classes were found in basil and allspice. Allspice extract showed the highest TACDPPH (2,876.05 ± 19.83 µmol-eq.quercetin/l), the lowest value was found in parsley extract (157.97 ± 4.80 µmol-eq.quercetin/l). At the same time, the highest TACORAC was found in the extract of dill greens and basil greens — 9,789.51 ± 433.22 μmol-eq.quercetin/l and 9,692.91 ± 203.42 μmol-eq.quercetin/l, respectively, and its lowest content was found in ginger — 956.98 ± 241.79 µmol-eq. quercetin/l. The microstructural features of cells peculiar for each sample were defined: external protective tissues, seed hulls, storage tissue, secretory and formative tissues, and their ability to perceive staining with general and specific dyes. The results obtained make it possible to test the composition of dry spices and herbs, to reveal their presence in the ready-to-consume meat products and to exclude cases of their adulteration.

About the Authors

V. A. Pchelkina
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Viktoriya A. Pchelkina, Candidate of Technical Sciences, Leading Researcher, Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin

26, Talalikhina str., 109316, Moscow

Tel.: +7–495–676–95–11 (242)



N. V. Kupaeva
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Nadezhda V. Kupaeva, Junior Researcher, Experimental Clinic-Laboratory of Biologically Active Substances of an Animal Origin

26, Talalikhina str., 109316, Moscow

Tel: +7–495–676–95–11 (209)



References

1. Śmiechowska, M., Newerli-Guz, J., Skotnicka, M. (2021). Spices and seasoning mixes in European Union — innovations and ensuring safety. Foods, 10(10), Article 2289. https://doi.org/10.3390/foods10102289

2. De La Torre, J., Gassara, F.E., Kouassi, A.P., Brar, S.K., Belkacemi, K. (2017). Spice use in food: Properties and benefits. Critical Reviews in Food Science and Nutrition, 57(6), 1078–1088. https://doi.org/10.1080/10408398.2013.858235

3. Borisova, A.V., Makarova, N.V. (2016). In vitro аntioxidant activity of spices used in human nutrition. Problems of Nutrition, 85(3), 120–125. (In Russian)

4. Roganova, E.E., Makarova, N.V. (2016). Possibilities of using spices as antioxidants. Food Industry, 6, 74–76. (In Russian)

5. Leja, K.B., Czaczyk, K. (2016). The industrial potential of herbs and spices? A mini review. Acta Scientiarum Polonorum Technologia Alimentaria, 15(4), 353–365. https://doi.org/10.17306/J.AFS.2016.4.34

6. Hay, E., Lucariello, A., Contieri, M., Esposito, T., De Luca, A., Guerra, G. et al. (2019). Therapeutic effects of turmeric in several diseases: An overview. Chemico-Biological Interactions, 310, Article 108729. https://doi.org/10.1016/j.cbi.2019.108729

7. Vázquez-Fresno, R., Rosana, A.R.R., Sajed, T., Onookome-Okome, T., Wishart, N. A., Wishart, D. S. (2019). Herbs and spices-biomarkers of intake based on human intervention studies — a systematic review. Genes and Nutrition, 14, Article 18. https://doi.org/10.1186/s12263-019-0636-8

8. Jiang, T. A. (2019). Health benefits of culinary herbs and spices. Journal of AOAC International, 102(2), 395–411. https://doi.org/10.5740/jaoacint.18-0418

9. Fleenor, B.S., Sindler, A.L., Marvi, N.K., Howell, K.L., Zigler, M.L., Yoshizawa, M. et al. (2013). Curcumin ameliorates arterial dysfunction and oxidative stress with aging. Experimental Gerontology, 48(2), 269–276. https://doi.org/10.1016/j.exger.2012.10.008

10. Opara, E.I., Chohan, M. (2014). Culinary herbs and spices: their bioactive properties, the contribution of polyphenols and the challenges in deducing their true health benefits. International Journal of Molecular Sciences, 15(10), 19183–19202. https://doi.org/10.3390/ijms151019183

11. Kunnumakkara, A.B., Sailo, B.L., Banik, K., Harsha, C., Prasad, S., Gupta, S.C. et al. (2018). Chronic diseases, inflammation, and spices: how are they linked? Journal of Translational Medicine, 16(1), Article 14. https://doi.org/10.1186/s12967-018-1381-2

12. Tsui, P.-F., Lin, C.-S., Ho, L.-J., Lai, J.-H. (2018). Spices and atherosclerosis. Nutrients, 10(11), Article 1724. https://doi.org/10.3390/nu10111724

13. Bukvicki, D., Gottardi, D., Prasad, S., Novakovic, M., Marin, P. D., Tyagi, A. K. (2020). The healing effects of spices in chronic diseases. Current medicinal Chemistry, 27(26), 4401–4420. https://doi.org/10.2174/0929867325666180831145800

14. Kardas, M., Toczyńska, K., Grochowska-Niedworok, E. (2017). Vegetal spices — their classification and culinary application. Food Industries, 1(2), 44–47. https://doi.org/10.15199/65.2017.2.7

15. Ninfali, P., Mea, G., Giorgini, S., Rocchi, M., Bacchiocca, M. (2005). Antioxidant capacity of vegetables, spices and dressings relevant to nutrition. British Journal of Nutrition, 93(2), 257–266. https://doi.org/10.1079/bjn20041327

16. Zhang, D., Gan, R.-Y., Zhang, J.-R., Farha, A.K., Li, H.-B., Zhu, F. et al. (2020). Antivirulence properties and related mechanisms of spice essential oils: A comprehensive review. Comprehensive Reviews in Food Science and Food Safety, 19(3), 1018–1055. https://doi.org/10.1111/1541-4337.12549

17. Yashin, A., Yashin, Y., Xia, X., Nemzer, B. (2017). Antioxidant activity of spices and their impact on human health: A Review. Antioxidants, 6(3), Article 70. https://doi.org/10.3390/antiox6030070

18. Karklelienė, R., Dambrauskienė, E., Juškevičienė, D., Radzevičius, A., Rubinskienė, M., Viškelis. P. (2014). Productivity and nutritional value of dill and parsley. Horticultural Science, 41(3), 131–137. https://doi.org/10.17221/240/2013-HORTSCI

19. Sudha, M.L., Eipson, S.W., Khanum, H., Naidu, M.M., Rao, G.V. (2015). Effect of normal/dehydrated greens on the rheological, microstructural, nutritional and quality characteristics of paratha — an Indian flat bread. Journal of Food Science and Technology, 52(2), 840–848. https://doi.org/10.1007/s13197-013-1062-3

20. Naidu, M.M., Vedashree, M., Satapathy, P., Khanum, H., Ramsamy, R., Hebbar, H.U. (2016). Effect of drying methods on the quality characteristics of dill (Anethum graveolens) greens. Food Chemistry, 192, 849–856. https://doi.org/10.1016/j.foodchem.2015.07.076

21. Chiang, L.-C., Ng, L.-T., Cheng, P.-W., Chiang, W., Lin, C.-C. (2005). Antiviral activities of extracts and selected pure constituents of Ocimum basilicum. Clinical and Experimental Pharmacology and Physiology, 32(10), 811–816. https://doi.org/10.1111/j.1440-1681.2005.04270.x

22. Pelipenko, T.V., Spoda, O.N., Mustafayev, S.K., Krepak, V.E., Kochieva, E.E. (2018). Study of parsley essential oil. Izvestiya Vuzov. Food Technology, 4(364), 15–18. https://doi.org/10.26297/0579-3009.2018.4.3

23. Khalil, A.F., Elkatry, H.O., El Mehairy, H.F. (2015). Protective effect of peppermint and parsley leaves oils against hepatotoxicity on experimental rats. Annals of Agricultural Sciences, 60(2), 353–359. https://doi.org/10.1016/j.aoas.2015.11.004

24. Abdellatief, S. A., Galal, A.A.A., Farouk, S.M., Abdel-Daim, M.M. (2017). Ameliorative effect of parsley oil on cisplatininduced hepato-cardiotoxicity: A biochemical, histopathological, and immunohistochemical study. Biomedicine and Pharmacotherapy, 86, 482–491. https://doi.org/10.1016/j.biopha.2016.12.038

25. Badr, G.M., Algefare, A.I., Alfwuaires, M.A. (2021). Antioxidant potential of parsley leaf (Petroselinum crispum) essential oil on hypothyroidism and testicular injury in mice intoxicated by carbon tetrachloride. BioMed Research International, 2021, Article 9989174. https://doi.org/10.1155/2021/9989174

26. García-Casal, M.N., Peña-Rosas, J.P., Gomes-Malavé, H. (2016). Sauces, spices, and condiments: definitions, potential benefits, consumption patterns, and global markets. Annals of the New York Academy of Sciences, 1379(1), 3–16. https://doi.org/10.1111/nyas.13045

27. Mechedkin, A.A. (2019). World spice market analysis. Agricultural Risk Management, 5(33), 50–62. (In Russian)

28. Osman, A.G., Raman, V., Haider, S., Ali, Z., Chittiboyina, A. G., Khan, I. A. (2019). Overview of analytical tools for the identification of adulterants in commonly traded herbs and spices. Journal of AOAC International, 102(2), 376–385. https://doi.org/10.5740/jaoacint.18–0389

29. Kucharska-Ambrożej, K., Karpinska, J. (2020). The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchemical Journal, 153, Article 104278. https://doi.org/10.1016/j.microc.2019.104278

30. Wadood, S.A., Boli, G., Xiaowen, Z., Hussain, I., Yimin, W. (2020). The application of spectroscopic techniques in combination with chemometrics for detection adulteration of some herbs and spices. Microchemical Journal, 152, Article 104295. https://doi.org/10.1016/j.microc.2019.104295

31. Pospiech, M., Lukaskova, Z.R., Tremlova, B., Randulova, Z., Bartl, P. (2011). Microscopic methods in food analysis. Мaso International, 1, 27–34. https://doi.org/10.2754/avb201101010027

32. Raman, V., Galal, A. M., Avula, B., Sagi, S., Smillie, T.J., Khan, I.A. (2014). Application of anatomy and HPTLC in characterizing species of Dioscorea (Dioscoreaceae). Journal of Natural Medicines, 68(4), 686–698. https://doi.org/10.1007/s11418-014-0849-5

33. Khan, M. T., Azhar, I., Shehzadi, N., Hussain, K., Parveen, S., Hanif, U. (2020). Morphological, microscopic, and physicochemical studies of Diospyros montana. Microscopy Research and Technique, 83(10), 1260–1281. https://doi.org/10.1002/jemt.23520

34. Kupaeva N. V., Ilina M. A., Svetlichnaya M. V., Zubarev Yu.N. (2022). Study of the antioxidant potential of oat drinks enriched with plant components. Food Systems, 5(2), 157–163. https://doi.org/10.21323/2618-9771-2022-5-2-157-163 (In Russian)

35. Romeis, B. (1989). Mikroskopische Technik. München: Urban und Schwarzenberg, 1989. (In German)

36. O’Brien, T.P., Feder, N., McCully, M.E. (1964). Polychromatic staining of plant cell walls by Toluidine Blue O. Protoplasma, 59, 368–373. https://doi.org/10.1007/BF01248568

37. Rao, P.S., Navinchandra, S., Jayaveera, K.N. (2012). An important spice, Pimenta dioica (Linn.) Merill: A review. International Current Pharmaceutical Journal, 1(8), 221–225. https://doi.org/10.3329/icpj.v1i8.11255

38. Ferreira, F.S., de Oliveira, V.S., Chávez, D.W.H., Chaves, D.S., Riger, C.J., Sawaya, A.C.H.F. et al. (2022). Bioactive compounds of parsley (Petroselinum crispum), chives (Allium schoenoprasum L) and their mixture (Brazilian cheiro-verde) as promising antioxidant and anti-cholesterol oxidation agents in a food system. Food Research International, 151, Article 110864. https://doi.org/10.1016/j.foodres.2021.110864

39. Epifanio, N.M.de M., Cavalcanti, L.R.I., Dos Santos, K.F., Duarte, P.S.C., Kachlicki, P., Ożarowski M. et al. (2020). Chemical characterization and in vivo antioxidant activity of parsley (Petroselinum crispum) aqueous extract. Food and Function, 11(6), 5346–5356. https://doi.org/10.1039/d0fo00484g

40. Dobričević, N., Žlabur, J. Š, Voća, S., Pliestić, S., Galić, A., Delić, A. et al. (2019). Bioactive compounds content and nutritional potential of different parsley parts (Petroselinum crispum Mill.). Journal of Central European Agriculture, 20(3), 900–910. https://doi.org/10.5513/JCEA01/20.3.2417

41. Hsu, K.-Y., Ho, C.-T., Pan, M.-H. (2023). The therapeutic potential of curcumin and its related substances in turmeric: From raw material selection to application strategies. Journal of Food and Drug Analysis, 31(2), 194–211. https://doi.org/10.38212/2224-6614.3454

42. Zagórska, J., Kukula-Koch, W., Czop, M., Iłowiecka, K., Koch, W. (2023). Impact of thermal processing on the composition of Curcuma longa rootstock. Foods, 12(16), Article 3086. https://doi.org/10.3390/foods12163086

43. Shilpa, S., Shwetha, H.J., Perumal, M.K., Ambedkar, R., Hanumanthappa, M., Baskaran, V. et al. (2021). Turmeric, red pepper, and black pepper affect carotenoids solubilized micelles properties and bioaccessibility: Capsaicin/piperine improves and curcumin inhibits carotenoids uptake and transport in Caco-2 cells. Journal of Food Science, 86(11), 4877–4891. https://doi.org/10.1111/1750-3841.15926

44. Ali, A., Wu, H., Ponnampalam, E.N., Cottrell, J.J., Dunshea, F.R., Suleria, H.A. R. (2021). Comprehensive profiling of most widely used spices for their phenolic compounds through LC-ESI-QTOF-MS2 and their antioxidant potential. Antioxidants, 10(5), Article 721. https://doi.org/10.3390/antiox10050721

45. Hong, S. W.-P. (2012). Characterization of Corydalis (Papaveraceae S. L.) and Dioscorea (Dioscoreaceae) species: 1. Root anatomical characters. International Journal of Biology, 4(3), 1–9. https://doi.org/10.5539/ijb.v4n3p1

46. Takooree, H., Aumeeruddy, M.Z., Rengasamy, K.R.R., Venugopala, K.N., Jeewon, R., Zengin, G. et al. (2019). A systematic review on black pepper (Piper nigrum L.): From folk uses to pharmacological applications. Critical Reviews in Food Science and Nutrition, 59(sup1), S210-S243. https://doi.org/10.1080/10408398.2019.1565489

47. Dörr, O.S., Brezina, S., Rauhut, D., Mibus, H. (2020). Plant architecture and phytochemical composition of basil (Ocimum basilicum L.) under the influence of light from microwave plasma and high-pressure sodium lamps. Journal of Photochemistry and Photobiology B: Biology, 202, Article 111678. https://doi.org/10.1016/j.jphotobiol.2019.111678

48. Li, J., Yi, T., Lai, H. -S., Xue, D., Jiang, H., Peng, H.-C. et al. (2008). Application of microscopy in authentication of traditional Tibetan medicinal plant Halenia Elliptica. Microscopy Research and Technique, 71(1), 11–19. https://doi.org/10.1002/jemt.20518


Review

For citations:


Pchelkina V.A., Kupaeva N.V. Analysis of antioxidant potential and study of the features of the microstructure in certain types of spices and herbs used in the meat processing industry. Theory and practice of meat processing. 2023;8(4):289-301. https://doi.org/10.21323/2414-438X-2023-8-4-289-301

Views: 471


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)