Preview

Theory and practice of meat processing

Advanced search

Loop-mediated isothermal amplification (LAMP) method for fast detection of Campylobacter spp in meat food products and environmental objects of a processing plant’s

https://doi.org/10.21323/2414-438X-2022-7-2-125-130

Abstract

There is constant necessity of developing the accurate and fast methods for detection of foodborne pathogens. Microorganisms of Campylobacter genus are one of the main causes of foodborne diseases worldwide. Fast identification of Campylobacter at all stages of the food life cycle is an efficient strategy to control foodborne campylobacteriosis. This article the authors evaluated a commercial loop-mediated isothermal amplification (LAMP) system with bioluminescence, called as the 3M™ Molecular Detection Analysis (MDA), which was used to find Campylobacter in food products with the help of a certain standard method, which is referred to as the reference method. The results of this study showed that the commercial LAMP based method is as efficient as the reference method, and features high specificity and minimum determinability (sensitivity). The LAMP based method has been shown to be a fast and reliable method for detection of Campylobacter spp. scarce presence (10 CFU/25 g) in meat, meat products, as well as carcass swabs and production facilities’ environment. The LAMP analysis required about 24–27 hours to achieve a result. However the LAMP based method will facilitate the detection of Campylobacter, as it provides much easier and faster detection of Cam  pylobacter spp., including Campylobacter jejuni/Campylobacter coli, than standard microbiological methods. The LAMP based method is an efficient tool to prevent the spreading of Campylobacter spp. contamination in food products.

About the Authors

Yu. K. Yushina
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Yulia K. Yushina, Candidate of Technical Sciences, Docent, Deputy Head of Laboratory «Center for food and feed testing»

26, Talalikhina str., 109316, Moscow



E. V. Zajko
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Elena V. Zayko, Researcher, Department of Hygiene of Production and Microbiology

26, Talalikhina str., 109316, Moscow



M. A. Grudistova
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Maria A. Grudistova, Researcher, Department of Hygiene of Production and Microbiology

26, Talalikhina str., 109316, Moscow



M. D. Reshchikov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Maksim D. Reshchikov, Senior Laboratory Assistant, Department of Hygiene of Production and Microbiology

26, Talalikhina str., 109316, Moscow



N. A. Nasyrov
V. M. Gorbatov Federal Research Center for Food Systems
Russian Federation

Nazarbay A. Nasyrov, Researcher, Department of Hygiene of Production and Microbiology

26, Talalikhina str., 109316, Moscow



D. V. Nikitchenko
Peoples' Friendship University of Russia
Russian Federation

Dmitriy V. Nikitchenko, Doctor of Biological Sciences, Docent, Professor, Department of Veterinary Medicine

6, Miklukho-Maklaya str., 117198, Moscow



References

1. Centers for Disease Control and Prevention (CDC) (2017). Foodborne Diseases Active Surveillance Network (FoodNet): FoodNet 2015 Surveillance Report (Final Data). Atlanta: U. S. Department of Health and Human Services. Retrieved from https://www.cdc.gov/foodnet/reports/annual-reports-2015.html. Accessed April 22, 2022.

2. Centers for Disease Control and Prevention (CDC) (2021). Campylobacter (Campylobacteriosis). Retrieved from https://www.cdc.gov/foodsafety/diseases/campylobacter. Accessed April 22, 2022.

3. Helwigh, B., Christensen, J., Müller, L. (2016). Annual Report on Zoonoses in Denmark 2016. Søborg: National Food Institute, 2016.

4. Quyen, T. L., Nordentoft, S., Vinayaka, A. C., Ngo, T. A., Engelsmenn, P., Sun, Y. et al. (2019). A sensitive, specific and simple loop mediated isothermal amplification method for rapid detection of campylobacter spp. in broiler production. Frontiers in Microbiology, 10(OCT), Article 2443. https://doi.org/10.3389/fmicb.2019.02443

5. Horrocks, S. M., Anderson, R. C., Nisbet, D. J., Ricke, S. C. (2009). Incidence and ecology of Campylobacter jejuni and coli in animals. Anaerobe, 15(1–2), 18–25. https://doi.org/10.1016/j.anaerobe.2008.09.001

6. EFSA (European Food Safety Authority) and ECDC (European Centre for Disease Prevention and Control). (2017). The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2016. EFSA Journal, 15(12), 5077. https://doi.org/10.2903/j.efsa.2017.5077

7. ISO 10272–1:2017 Microbiology of the food chain — Horizontal method for detection and enumeration of Campylobacter spp. — Part 1: Detection method. Retrieved from https://www.iso.org/standard/63225.html. Accessed April 22, 2022.

8. Jasson, V., Sampers, I., Botteldoorn, N., López-Gálvez, F., Baert, L., Denayer, S. et al. (2009). Characterization of Escherichia coli from raw poultry in Belgium and impact on the detection of Campylobacter jejuni using Bolton broth. International Journal of Food Microbiology, 135(3), 248–253. https://doi.org/10.1016/j.ijfoodmicro.2009.09.007

9. Baylis, C. L., MacPhee, S., Martin, K. W., Humphrey, T. J., Betts, R. P. (2000). Comparison of three enrichment media for the isolation of Campylobacter spp. from foods. Journal of Applied Microbiology, 89(5), 884–891. https://doi.org/10.1046/j.1365-2672.2000.01203.x

10. Ricke, S. C., Feye, K. M., Chaney, W. E., Shi, Z., Pavlidis, H., Yang, Y. (2019). Developments in rapid detection methods for the detection of foodborne campylobacter in the United States. Frontiers in Microbiology, 10(JAN), Article 3280. https://doi.org/10.3389/fmicb.2018.03280

11. Tholozan, J. L., Cappelier, J. M., Tissier, J. P., Delattre, G., Federighi, M. (1999). Physiological characterization of viablebut-nonculturable Campylobacter jejuni cells. Applied and Environmental Microbiology, 65(3), 1110–1116. https://doi.org/10.1128/aem.65.3.1110-1116.1999

12. Ziprin, R. L., Droleskey, R. E., Hume, M. E., Harvey, R. B. (2003). Failure of viable nonculturable Campylobacter jejuni to colonize the cecum of newly hatched leghorn chicks. Avian Diseases, 47(3), 753–758. https://doi.org/10.1637/7015

13. Castro, A. G., Dorneles, E. M., Santos, E. L., Alves, T. M., Silva, G. R., Figueiredo, T. C. et al. (2018). Viability of Campylobacter spp. in frozen and chilled broiler carcasses according to real-time PCR with propidium monoazide pretreatment. Poultry Science, 97(5), 1706–1711. https://doi.org/10.3382/ps/pey020

14. Oliver, J. D. (2005). The viable but nonculturable state in bacteria. Journal of Microbiology, 43, 93–100.

15. Duarte, A., Botteldoorn, N., Coucke, W., Denayer, S., Dierick, K., Uyttendaele, M. (2015). Effect of exposure to stress conditions on propidium monoazide (PMA)-qPCR based Campylobacter enumeration in broiler carcass rinses. Food Microbiology, 48, 182– 190. https://doi.org/10.1016/j.fm.2014.12.011

16. Lakshmi, B. A., Kim, S. (2021). Recent trends in the utilization of LAMP for the diagnosis of viruses, bacteria, and allergens in food. Chapter in a book: Recent developments in applied microbiology and biochemistry. Academic Press, 2021. https://doi.org/10.1016/B978–0–12–821406–0.00027–8

17. Havelaar, A. H., Kirk, M. D., Torgerson, P. R., Gibb, H. J., Hald, T., Lake, R. J. et al. (2010). Group, on behalf of WHOFDBER (2015). World health organization global Estimates and regional comparisons of the burden of foodborne disease in 2010. PLoS Medicine, 12(12), Article e1001923. https://doi.org/10.1371/journal.pmed.1001923

18. Li, Y., Fan, P., Zhou, S., Zhang, L. (2017). Loop-mediated isothermal amplification (LAMP): A novel rapid detection platform for pathogens. Microbial Pathogenesis, 107, 54–61. https://doi.org/10.1016/j.micpath.2017.03.016

19. Rajagopal, R., Barnes, C.A., David, J.M., Goseland, J. (2021). Evaluation of a commercial loop-mediated isothermal amplification assay, 3MTM Molecular Detection Assay 2 — Campylobacter, for the detection of Campylobacter from poultry matrices. British Poultry Science, 62(3)404–413. https://doi.org/10.1080/00071668.2021.1879992

20. Delpiazzo, R., Barcellos, M., Barros, S., Betancor, L., Fraga, M., Gil, J. et al. (2021). Accurate and fast identification of Campylobacter fetus in bulls by real-time PCR targeting a 16S rRNA gene sequence Veterinary and Animal Science, 11, Article 100163. https://doi.org/10.1016/j.vas.2020.100163

21. Linton, D., Owen, R.J., Stanley, J, (1996). Rapid identification by PCR of the genus Campylobacter and of five Campylobacter species enteropathogenic for man and animals. Research in Microbiology, 147(9), 707–718. https://doi.org/10.1016/s0923-2508(97)85118-2

22. Belmar Campos, C., Fenner, I., Wiese, N., Lensing, C., Christner, M., Rohde, H. at al. (2014). Prevalence and genotypes of extended spectrum beta-lactamases in Enterobacteriaceae isolated from human stool and chicken meat in Hamburg, Germany. International Journal of Medical Microbiology, 304(5–6), 678– 684. https://doi.org/10.1016/j.ijmm.2014.04.012

23. Cantón, R., Novais, A., Valverde, A., Machado, E., Peixe, L., Baquero, F. et al. (2008). Prevalence and spread of extendedspectrum β-lactamase-producing Enterobacteriaceae in Europe. Clinical Microbiology and Infection, 14(SUPPL. 1), 144–153. https://doi.org/10.1111/j.1469-0691.2007.01850.x

24. Dierikx, C., van der Goot, J., Fabri, T., van Essen-Zandbergen, A., Smith, H., Mevius, D. (2013). Extended-spectrum-β-lactamaseand AmpC‑β-lactamase-producing Escherichia coli in Dutch broilers and broiler farmers. Journal of Antimicrobial Chemotherapy, 68(1), 60–67. https://doi.org/10.1093/jac/dks349

25. Machado, E., Coque, T. M., Canton, R., Sousa, J. C., Peixe, L. (2008). Antibiotic resistance integrons and extended-spectrum β-lactamases among Enterobacteriaceae isolates recovered from chickens and swine in Portugal. Journal of Antimicrobial Chemotherapy, 62(2), 296–302. https://doi.org/10.1093/jac/dkn179

26. Sabike, I. I., Uemura, R., Kirino, Y., Mekata, H., Sekiguchi, S., Okabayashi, T. et al. (2016). Use of direct LAMP screening of broiler fecal samples for Campylobacter jejuni and Campylobacter coli in the positive flock identification strategy. Frontiers in Microbiology, 7(SEP), Article 1582. https://doi.org/10.3389/fmicb.2016.01582

27. Romero, M. R., Cook, N. (2018). A rapid LAMP-based method for screening poultry samples for Campylobacter without enrichment. Frontiers in Microbiology, 9(OCT), Article 2401. https://doi.org/10.3389/fmicb.2018.02401

28. Gunasegar, S., Neela, V. K. (2021). Evaluation of diagnostic accuracy of loop-mediated isothermal amplification method (LAMP) compared with polymerase chain reaction (PCR) for Leptospira spp. in clinical samples: a systematic review and meta-analysis. Diagnostic Microbiology and Infectious Disease, 100(3), Article 115369. https://doi.org/10.1016/j.diagmicrobio.2021.115369

29. Shang, Y., Ye, Q., Cai, S., Wu, Q., Pang, R., Yang, S. et al. (2021). Loop-mediated isothermal amplification (LAMP) for rapid detection of Salmonella in foods based on new molecular targets. LWT, 142, Article 110999. https://doi.org/10.1016/j.lwt.2021.110999

30. Mori, Y., Nagamine, K., Tomita, N., Notomi, T. (2001). Detection of loop-mediated isothermal amplification reaction by turbidity derived from magnesium pyrophosphate formation. Biochemical and Biophysical Research Communications, 289(1), 150–154. https://doi.org/10.1006/bbrc.2001.5921

31. Kreitlow, A., Becker, A., Ahmed, M. F., Kittler, S., Schotte, U., Plötz, M. et al. (2021). Combined loop-mediated isothermal amplification assays for rapid detection and one-step differentiation of Campylobacter jejuni and Campylobacter coli in meat products. Frontiers in Microbiology, 12, Article 668824. https://doi.org/10.3389/fmicb.2021.668824


Review

For citations:


Yushina Yu.K., Zajko E.V., Grudistova M.A., Reshchikov M.D., Nasyrov N.A., Nikitchenko D.V. Loop-mediated isothermal amplification (LAMP) method for fast detection of Campylobacter spp in meat food products and environmental objects of a processing plant’s. Theory and practice of meat processing. 2022;7(2):125-130. https://doi.org/10.21323/2414-438X-2022-7-2-125-130

Views: 586


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)