Preview

Теория и практика переработки мяса

Расширенный поиск

Scientific challenges in modeling mastication of meat using engineering tools

https://doi.org/10.21323/2414-438X-2022-7-1-16-21

Аннотация

This paper gives an overview of scientific challenges that may occur while performing modelling meat (as a product) and simulating mastication by using engineering tools. To evaluate these challenges, Failure Mode and Effect Analysis method has been employed to assess six engineering tools often used in analyzing different perspectives of food oral processing. As a result, a risk priority number comprising of severity of the failure, occurrence probability of a failure and difficulty to detect the failure has been calculated. Results show that finite element method and emotion detection are two tools with highest levels of risks. The first method is a known engineering solution used for analyzing different types of materials, but when it comes to meat as a very complex and anisotropic material, risk of inadequate calculations is high. Emotion detection is not so much dependent on meat as a product consumed but on imperfections of software and risk of recognizing false emotions is high. Findings indicate that more research is needed for a more sophisticated use of these engineering tools. Further studies should include other engineering models that simulate meat breakdown during mastication, the role of saliva and jaw movement with the aim to carry out full modelling of mastication of an average meat consumer.

Ключевые слова


Об авторе

I. V. Djekic
University of Belgrade
Сербия

Faculty of Agriculture

Belgrade 



Список литературы

1. Trystram, G. (2012). Modelling of food and food processes. Journal of Food Engineering, 110(2), 269-277. https://doi.org/10.1016/j.jfoodeng.2011.05.001

2. Carvalho, O., Charalambides, M.N., Djekić, I., Athanassiou, C., Bakalis, S., Benedito, J. et al. (2021). Modelling processes and products in the cereal chain. Foods, 10(1), Article 82. https://doi.org/10.3390/foods10010082

3. Fito, P., LeMaguer, M., Betoret, N., Fito, P.J. (2007). Advanced food process engineering to model real foods and processes: The “SAFES” methodology. Journal of Food Engineering, 83(2), 173- 185. https://doi.org/10.1016/j.jfoodeng.2007.02.017

4. Abera, M. K., Aregawi, W.A., Ho, Q.T., Rogge, S., Delele, M.A., Ambaw, A. et al. (2016). Multiscale Modeling of Food Processes. Chapter in a book: Reference Module in Food Science. Elsevier, 2016.

5. Djekic, I., Mujčinović, A., Nikolić, A., Jambrak, A.R., Papademas, P., Feyissa, A.H. et al. (2019). Cross-European initial survey on the use of mathematical models in food industry. Journal of Food Engineering, 261, 109-116. https://doi.org/10.1016/j.jfoodeng.2019.06.007

6. Matarneh, S.K., England, E.M., Scheffler, T.L., Gerrard, D.E. (2017). The conversion of muscle to meat. Lawrie´ s Meat Science. Elsevier. p. 159-185. . https://doi.org/10.1016/B978-0-08-100694-8.00005-4

7. Bekhit, A.E.-D.A., Carne, A., Ha, M., Franks, P. (2014). Physical interventions to manipulate texture and tenderness of fresh meat: A Review. International Journal of Food Properties, 17(2), 433-453. https://doi.org/10.1080/10942912.2011.642442

8. Spyrou, L.A. (2020). A computational multiscale modeling framework for investigating the mechanical properties of meat. Food Structure, 26, Article 100161. https://doi.org/10.1016/j.foostr.2020.100161

9. Purslow, P.P. (2005). Intramuscular connective tissue and its role in meat quality. Meat science, 70(3), 435-447. https://doi.org/10.1016/j.meatsci.2004.06.028

10. Henchion, M., McCarthy, M., Resconi, V.C., Troy, D. (2014). Meat consumption: Trends and quality matters. Meat science, 98(3), 561-568. http://doi.org/10.1016/j.meatsci.2014.06.007

11. Mathijs, E. (2015). Exploring future patterns of meat consumption. Meat science, 109, 112-116. http://doi.org/10.1016/j.meatsci.2015.05.007

12. Font-i-Furnols, M., Guerrero, L. (2014). Consumer preference, behavior and perception about meat and meat products: An overview. Meat science, 98(3), 361-371. http://doi.org/10.1016/j.meatsci.2014.06.025

13. Ángel-Rendón, S.V., Filomena-Ambrosio, A., Hernández-Carrión, M., Llorca, E., Hernando, I., Quiles, A. et al. (2020). Pork meat prepared by different cooking methods. A microstructural, sensorial and physicochemical approach. Meat science, 163, Article 108089. https://doi.org/10.1016/j.meatsci.2020.108089

14. Chen, J. (2009). Food oral processing — A review. Food Hydrocolloids, 23(1), 1-25. https://doi.org/10.1016/j.foodhyd.2007.11.013

15. Berthaume, M.A. (2016). Food mechanical properties and dietary ecology. American Journal of Physical Anthropology, 159, 79-104. https://doi.org/10.1002/ajpa.22903

16. Tomasevic, I., Tomovic, V., Milovanovic, B., Lorenzo, J., Đorđević, V., Karabasil, N. et al. (2019). Comparison of a computer vision system vs. traditional colorimeter for color evaluation of meat products with various physical properties. Meat science, 148, 5-12. https://doi.org/10.1016/j.meatsci.2018.09.015

17. Djekic, R., Ilic, J., Tomasevic, I., Djekic, I. (26-29 September 2021). Use of engineering tools in modelling first bite-case study with grilled pork meat. IOP Conference Series: Earth and Environmental Science, 854(1), Article 012022. https://doi.org/10.1088/1755-1315/854/1/012022

18. Ilić, J., Tomašević, I., Đekic, I. (2019). Modelling solid food oral processing using quality function deployment. Food and Feed Research, 46(2), 227-234. https://doi.org/10.5937/ffr1902227i

19. Djekic, I., Ilic, J., Guiné, R.P.F., Tomasevic, I. (2020). Can we understand food oral processing using Kano model? Case study with confectionery products. Journal of Texture Studies, 51(6), 861-869. https://doi.org/10.1111/jtxs.12550

20. Xiao, N., Huang, H.-Z., Li, Y., He, L., Jin, T. (2011). Multiple failure modes analysis and weighted risk priority number evaluation in FMEA. Engineering Failure Analysis, 18(4), 1162-1170. https://doi.org/10.1016/j.engfailanal.2011.02.004

21. IEC. (2016). IEC60812:2016 Failure modes and effects analysis (FMEA and FMECA). Commission Electrotechnique Internationale: Geneva, Switzerland.

22. Arvanitoyannis, I.S., Savelides, S.C. (2007). Application of failure mode and effect analysis and cause and effect analysis and Pareto diagram in conjunction with HACCP to a chocolateproducing industry: a case study of tentative GMO detection at pilot plant scale. International Journal of Food Science and Technolog, 42(11), 1265-1289. https://doi.org/10.1111/j.1365-2621.2006.01304.x

23. Papadopoulos, Y., Walker, M., Parker, D., Rüde, E., Hamann, R., Uhlig et al. (2011). Engineering failure analysis and design optimisation with HiP-HOPS. Engineering Failure Analysis, 18(2), 590-608. https://doi.org/10.1016/j.engfailanal.2010.09.025

24. Djekic, I., Pojić, M., Tonda, A., Putnik, P., Bursać Kovačević, D., Režek-Jambrak, A. et al. (2019). Scientific challenges in performing life-cycle assessment in the food supply chain. Foods, 8(8), Article 301. https://doi.org/10.3390/foods8080301

25. Djekic, I., Tomic, N., Smigic, N., Udovicki, B., Hofland, G., Rajkovic, A. (2018). Hygienic design of a unit for supercritical fluid drying — case study. British Food Journal, 120(9), 2155-2165. https://doi.org/10.1108/bfj-01-2018-0052

26. Novaković, S., Tomašević, I. (1-4 October 2017). A comparison between Warner-Bratzler shear force measurement and texture profile analysis of meat and meat products: A review. IOP Conference Series: Earth and Environmental Science, 85, Article 012063. https://doi.org/10.1088/1755-1315/85/1/012063

27. Voisey, P.W., Larmond, E. (1974). Examination of factors affecting performance of the Warner-Bratzler meat shear test. Canadian Institute of Food Science and Technology Journal, 7(4), 243-249. https://doi.org/10.1016/s0315-5463(74)73920-7

28. Djekic, I., Ilic, J., Lorenzo, J.M., Tomasevic, I. (2021). How do culinary methods affect quality and oral processing characteristics of pork ham? Journal of Texture Studies, 52(1), 36-44. https://doi.org/10.1111/jtxs.12557

29. Vallespir, F., Rodríguez, Ó., Eim, V.S., Rosselló, C., Simal, S. (2019). Effects of freezing treatments before convective drying on quality parameters: Vegetables with different microstructures. Journal of Food Engineering, 249, 15-24. https://doi.org/10.1016/j.jfoodeng.2019.01.006

30. Nieto, A.B., Vicente, S., Hodara, K., Castro, M.A., Alzamora, S.M. (2013). Osmotic dehydration of apple: Influence of sugar and water activity on tissue structure, rheological properties and water mobility. Journal of Food Engineering, 119(1), 104-114. https://doi.org/10.1016/j.jfoodeng.2013.04.032

31. Honikel, K.O. (1998). Reference methods for the assessment of physical characteristics of meat. Meat science, 49(4), 447- 457. https://doi.org/10.1016/S0309-1740(98)00034-5

32. Yousefi, S., Farsi, H., Kheiralipour, K. (2016). Drop test of pear fruit: Experimental measurement and finite element modelling. Biosystems Engineering, 147, 17-25. https://doi.org/10.1016/j.biosystemseng.2016.03.004

33. Amézquita, A., Wang, L., Weller, C.L. (2005). Finite element modeling and experimental validation of cooling rates of large ready-toeat meat products in small meat-processing facilities. Transactions of the American Society of Agricultural Engineers, 48(1), 287-303.

34. Santos, M., Zaritzky, N., Califano, A. (2008). Modeling heat transfer and inactivation of Escherichia coli O157: H7 in precooked meat products in Argentina using the finite element method. Meat science, 79(3), 595-602. https://doi.org/10.1016/j.meatsci.2007.12.014

35. Cepeda, J., Weller, C., Thippareddi, H., Negahban, M., Subbiah, J. (2013). Modeling cooling of ready-to-eat meats by 3D finite element analysis: validation in meat processing facilities. Journal of Food Engineering, 116(2), 450-461. https://doi.org/10.1016/j.jfoodeng.2012.11.024

36. Wang, L., Sun, D.-W. (2002). Modelling three-dimensional transient heat transfer of roasted meat during air blast cooling by the finite element method. Journal of Food Engineering, 51(4), 319-328. https://doi.org/10.1016/s0260-8774(01)00074-7

37. Tomasevic, I., Djekic, I., Font-i-Furnols, M., Terjung, N., Lorenzo, J.M. (2021). Recent advances in meat color research. Current Opinion in Food Science, 41, 81-87. https://doi.org/10.1016/j.cofs.2021.02.012

38. Tomasevic, I., Tomovic, V., Ikonic, P., Lorenzo Rodriguez, J.M., Barba, F.J., Djekic, I. et al. (2019). Evaluation of poultry meat colour using computer vision system and colourimeter: Is there a difference? British Food Journal, 121(5), 1078-1087. https://doi.org/10.1108/BFJ-06-2018-0376

39. Rizo, A., Peña, E., Alarcon-Rojo, A.D., Fiszman, S., Tárrega, A. (2019). Relating texture perception of cooked ham to the bolus evolution in the mouth. Food Research International, 118, 4-12. https://doi.org/10.1016/j.foodres.2018.02.073

40. Ilic, J., Tomasevic, I., Djekic, I. (2021). Ease of mastication index — Quantification of mastication effort using quality function deployment. Journal of Texture Studies, 52(4), 447-460. https://doi.org/10.1111/jtxs.12621

41. Ilic, J., Tomasevic, I., Djekic, I. (2021). Influence of boiling, steaming, and sous-vide on oral processing parameters of celeriac (Apium graveolens var. rapaceum). International Journal of Gastronomy and Food Science, 23, Article 100308. https://doi.org/10.1016/j.ijgfs.2021.100308

42. Forde, C., Van Kuijk, N., Thaler, T., de Graaf, C., Martin, N. (2013). Oral processing characteristics of solid savoury meal components, and relationship with food composition, sensory attributes and expected satiation. Appetite, 60(1), 208-219. https://doi.org/10.1016/j.appet.2012.09.015

43. Djekic, I., Ilić, J., Chen, J., Djekic, R., Sołowiej, B.G., Vujadinović, D. et al. (2021). Analysis of pungency sensation effects from an oral processing, sensorial and emotions detection perspective — case study with grilled pork meat. Applied Sciences (Switzerland), 11(21), Article 10459. https://doi.org/10.3390/app112110459

44. Rocha, C., Lima, R.C., Moura, A.P., Costa, T., Cunha, L.M. (2019). Implicit evaluation of the emotional response to premium organic herbal infusions through a temporal dominance approach: Development of the temporal dominance of facial emotions (TDFE). Food Quality and Preference, 76, 71-80. https://doi.org/10.1016/j.foodqual.2019.04.001

45. Taigman, Y., Yang, M., Ranzato, M.A., Wolf, L. (23-28 June 2014). Deepface: Closing the gap to human-level performance in face verification. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Article 6909616. https://doi.org/10.1109/CVPR.2014.220

46. Danner, L., Sidorkina, L., Joechl, M., Duerrschmid, K. (2014). Make a face! Implicit and explicit measurement of facial expressions elicited by orange juices using face reading technology. Food Quality and Preference, 32, 167-172. https://doi.org/10.1016/j.foodqual.2013.01.004

47. Ahmed, M.U., Woo, K.J., Hyeon, K.Y., Bashar, M.R., Rhee, P.K. (2018). Wild facial expression recognition based on incremental active learning. Cognitive Systems Research, 52, 212-222. https://doi.org/10.1016/j.cogsys.2018.06.017


Рецензия

Для цитирования:


Djekic I.V. Scientific challenges in modeling mastication of meat using engineering tools. Теория и практика переработки мяса. 2022;7(1):16-21. https://doi.org/10.21323/2414-438X-2022-7-1-16-21

For citation:


Djekic I.V. Scientific challenges in modeling mastication of meat using engineering tools. Theory and practice of meat processing. 2022;7(1):16-21. https://doi.org/10.21323/2414-438X-2022-7-1-16-21

Просмотров: 570


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)