Preview

Theory and practice of meat processing

Advanced search

An effect of food additives on microbiome

https://doi.org/10.21323/2414-438X-2021-6-3-259-268

Abstract

The paper presents a review of available data about an effect of food additives on the human microbiome and lists the main physiological functions of the gut microbiome. The process of the human microbiome evolution is examined. The relationship between the emergence of a disease and the microbiome composition, as well as the main factors influencing the gut microbiome composition are described. The main food additives used today are listed, their key features are discussed and their structural formulas are given. The information about their effect on the human body through an influence on the microbiome composition is presented. The data on an effect of polysorbate 80, carboxymethylcellulose, sodium sulfite, nisin, potassium sorbate, sodium benzoate, sodium nitrate, essential oils, titanium dioxide and different sweeteners on the microbiome are analyzed. It is explained what microbial communities are suppressed and what communities gain advantages in multiplication when consumers eat food with one or another food additive. The consequences of alterations in the microbiome for the consumer’s body are examined. Conclusions were made about the necessity of additional studies about an effect of food additives on the composition of the human microbiome.

About the Authors

V. Yu. Kornienko
V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

 candidate of biological sciences, Senior Researcher, Laboratory of molecular biology and bioinformatics

26, Talalikhina Str., Moscow, 109316, Russia

Tel.: +7–495–676–95–11 (109)



M. Yu. Minaev
V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences
Russian Federation

candidate of technical sciences, head of Laboratory of molecular biology and bioinformatics

26, Talalikhina Str., Moscow, 109316, Russia

Tel.: +7–495–676–95–11 (109)



References

1. Cao, Y., Liu, H., Qin, N., Ren, X., Zhu, B., Xia, X. (2020). Impact of food additives on the composition and function of gut microbiota: A review. Trends in Food Science and Technology, 99, 295–310. https://doi.org/10.1016/j.tifs.2020.03.006

2. Sender, R., Fuchs, S., Milo, R. (2016). Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell, 164(3), 337–340. https://doi.org/10.1016/j.cell.2016.01.013

3. Belkaid, Y., Hand, T. W. (2014). Role of the microbiota in immunity and inflammation. Cell, 157(1), 121–141. https://doi.org/10.1016/j.cell.2014.03.011

4. Kornienko, V. Yu. (2015). The skin microbiome: the relationship between changes in the microbial community and disease (literature review). Young scientist, 10 (90), 477–483. (In Russian)

5. Ding, R.X., Goh, W.R., Wu, R.N., Yue, X.Q., Luo, X., Khine, W.W.T. et al. (2019). Revisit gut microbiota and its impact on human health and disease. Journal of Food and Drug Analysis, 27(3), 623–631. https://doi.org/10.1016/j.jfda.2018.12.012

6. Holder, M.K., Chassaing, B. (2018). Impact of food additives on the gut-brain axis. Physiology and Behavior, 192, 173–176. https://doi.org/10.1016/j.physbeh.2018.02.025

7. Martinez-Guryn, K., Leone, V., Chang, E.B. (2019). Regional diversity of the gastrointestinal microbiome. Cell Host and Microbe, 26(3), 314–324. https://doi.org/10.1016/j.chom.2019.08.011

8. Rajilic-Stojanovic, M., de Vos, W.M. (2014). The first 1000 cultured species of the human gastrointestinal microbiota. FEMS Microbiology Reviews, 38(5), 996–1047. https://doi.org/10.1111/1574–6976.12075

9. Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M. et al. (2005). Microbiology: Diversity of the human intestinal microbial flora. Science, 308(5728), 1635–1638. https://doi.org/10.1126/science.1110591

10. Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. et al. (2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207–214. https://doi.org/10.1038/nature11234

11. Bäckhed, F., Ley, R. E., Sonnenburg, J. L., Peterson, D. A., Gordon, J. I. (2005). Host-bacterial mutualism in the human intestine. Science, 307(5717), 1915–1920. https://doi.org/10.1126/science.1104816

12. Fomina, T.A., Kornienko, V.Y., Minaev, M. Yu. (2020). Methods of molecular diagnostics for fish species identification. Food systems, 3(3), 32–41. https://doi.org/10.21323/2618–9771–2020–3–3–32–41

13. De Filippis, F., Pellegrini, N., Vannini, L., Jeffery, I. B., La Storia, A., Laghi, L. et al. (2016). High-level adherence to a mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut, 65(11), Article 309957. https://doi.org/10.1136/gutjnl-2015–309957

14. Monteiro, C. A., Moubarac, J. -С., Levy, R. B., Canella, D. S., Da Costa Louzada, M. L., Cannon, G. (2018). Household availability of ultra-processed foods and obesity in nineteen European countries. Public Health Nutrition, 21(1), 18–26. doi:10.1017/S1368980017001379

15. Gokoglu, N. (2019). Novel natural food preservatives and applications in seafood preservation: A review. Journal of the Science of Food and Agriculture, 99(5), 2068–2077. https://doi.org/10.1002/jsfa.9416

16. Levine, A., Sigall Boneh, R., Wine, E. (2018). Evolving role of diet in the pathogenesis and treatment of inflammatory bowel diseases. Gut, 67(9), 1726–1738. https://doi.org/10.1136/gutjnl-2017–315866

17. Rodriguez-Palacios, A., Harding, A., Menghini, P., Himmelman, C., Retuerto, M., Nickerson, K. P. et al. (2018). The artificial sweetener splenda promotes gut proteobacteria, dysbiosis, and myeloperoxidase reactivity in crohn’s disease-like ileitis. Inflammatory Bowel Diseases, 24(5), 1005–1020. https://doi.org/10.1093/ibd/izy060

18. Abou-Donia, M. B., El-Masry, E. M., Abdel-Rahman, A. A., McLendon, R. E., Schiffman, S. S. (2008). Splenda alters gut microflora and increases intestinal P-glycoprotein and cytochrome P-450 in male rats. Journal of Toxicology and Environmental Health — Part A: Current Issues, 71(21), 1415–1429. https://doi.org/10.1080/15287390802328630

19. Gerasimidis, K., Bryden, K., Chen, X., Papachristou, E., Verney, A., Roig, M. et al. (2020). The impact of food additives, artificial sweeteners and domestic hygiene products on the human gut microbiome and its fibre fermentation capacity. European Journal of Nutrition, 59(7), 3213–3230. https://doi.org/10.1007/s00394–019–02161–8

20. Ben-Arye, T., Shandalov, Y., Ben-Shaul, S., Landau, S., Zagury, Y., Ianovici, I. et al. (2020). Textured soy protein scaffolds enable the generation of three-dimensional bovine skeletal muscle tissue for cell-based meat. Nature Food, 1(4), 210–220. https://doi.org/10.1038/s43016–020–0046–5

21. Jie, Z., Xia, H., Zhong, S.-L., Feng, Q., Li, S., Liang, S. et al. (2017). The gut microbiome in atherosclerotic cardiovascular disease. Nature Communications, 8(1), Article 845. https://doi.org/10.1038/s41467–017–00900–1

22. Sedighi, M., Razavi, S., Navab-Moghadam, F., Khamseh, M.E., Alaei-Shahmiri, F., Mehrtash, A. et al. (2017). Comparison of gut microbiota in adult patients with type 2 diabetes and healthy individuals. Microbial Pathogenesis, 111, 362–369. https://doi.org/10.1016/j.micpath.2017.08.038

23. Conlon, M.A., Bird, A.R. (2014). The impact of diet and lifestyle on gut microbiota and human health. Nutrients, 7(1), 17–44. https://doi.org/10.3390/nu7010017

24. Bravo, J. A., Forsythe, P., Chew, M. V., Escaravage, E., Savignac, H. M., Dinan, T. G. et al. (2011). Ingestion of lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proceedings of the National Academy of Sciences of the United States of America, 108(38), 16050–16055. https://doi.org/10.1073/pnas.1102999108

25. Portune, K.J., Beaumont, M., Davila, A.M., Tomé, D., Blachier, F., Sanz, Y. (2016). Gut microbiota role in dietary protein metabolism and health-related outcomes: The two sides of the coin. Trends in Food Science and Technology, 57, 213–232. https://doi.org/10.1016/j.tifs.2016.08.011

26. Pugin, B., Barcik, W., Westermann, P., Heider, A., Wawrzyniak, M., Hellings, P. et al. (2017). A wide diversity of bacteria from the human gut produces and degrades biogenic amines. Microbial Ecology in Health and Disease, 28(1), Article 1353881. https://doi.org/10.1080/16512235.2017.1353881

27. Oliphant, K., Allen-Vercoe, E. (2019). Macronutrient metabolism by the human gut microbiome: Major fermentation by-products and their impact on host health. Microbiome, 7(1), Article 91. https://doi.org/10.1186/s40168–019–0704–8

28. Morrison, D.J., Preston, T. (2016). Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes, 7(3), 189–200. https://doi.org/10.1080/19490976.2015.1134082

29. Hooper, L.V., Littman, D.R., Macpherson, A. J. (2012). Interactions between the microbiota and the immune system. Science, 336(6086), 1268–1273. https://doi.org/10.1126/science.1223490

30. Zhang, K.Y., Hornef, M.W., Dupont, A. (2015). The intestinal epithelium as guardian of gut barrier integrity. Cellular Microbiology, 17(11), 1561–1569. https://doi.org/10.1111/cmi.12501

31. Cresci, G.A., Bawden, E. (2015). Gut microbiome: What we do and don’t know. Nutrition in Clinical Practice, 30(6), 734–746. https://doi.org/10.1177/0884533615609899

32. Eid, H.M., Wright, M.L., Kumar, N.V.A., Qawasmeh, A., Hassan, S.T.S., Mocan, A. et al. (2017). Significance of microbiota in obesity and metabolic diseases and the modulatory potential by medicinal plant and food ingredients. Frontiers in Pharmacology, 8(Jun), Article 387. https://doi.org/10.3389/fphar.2017.00387

33. Fang, B., Li, J.W., Zhang, M., Ren, F.Z., Pang, G.F. (2018). Chronic chlorpyrifos exposure elicits diet-specific effects on metabolism and the gut microbiome in rats. Food and Chemical Toxicology, 111, 144–152. https://doi.org/10.1016/j.fct.2017.11.001

34. Derrien, M., Alvarez, A.S., de Vos, W.M. (2019). The gut microbiota in the first decade of life. Trends in Microbiology, 27(12), 997–1010. https://doi.org/10.1016/j.tim.2019.08.001

35. Ottman, N., Smidt, H., de Vos, W., Belzer, C. (2012). The function of our microbiota: Who is out there and what do they do? Frontiers in Cellular and Infection Microbiology, 2, Article 104. https://doi.org/10.3389/fcimb.2012.00104

36. American Dietetic Association. (2004). Position of the American dietetic association: Use of nutritive and nonnutritive sweeteners. (2004). Journal of the American Dietetic Association, 104(2), 255–275. https://doi.org/10.1016/j.jada.2003.12.001

37. Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., Lu, K. (2017). The artificial sweetener acesulfame potassium affects the gut microbiome and body weight gain in CD-1 mice. PloS One, 12(6), Article e0178426. https://doi.org/10.1371/journal.pone.0178426

38. Suez, J., Korem, T., Zeevi, D., Zilberman-Schapira, G., Thaiss, C.A., Maza, O. et al. (2014). Artificial sweeteners induce glucose intolerance by altering the gut micro-biota. Nature, 514(7521), 181–186. https://doi.org/10.1038/nature13793

39. Frankenfeld, C.L., Sikaroodi, M., Lamb, E., Shoemaker, S., Gillevet, P.M. (2015). High-intensity sweetener consumption and gut microbiome content and predicted gene function in a crosssectional study of adults in the United States. Annals of Epidemiology, 25(10), 736–742.e4. https://doi.org/10.1016/j.annepidem.2015.06.083

40. Butchko, H. H., Stargel, W. W., Comer, C. P., Mayhew, D. A., Benninger, C., Blackburn, G. L. et al. (2002). Aspartame: Review of safety. Regulatory Toxicology and Pharmacology: RTP, 35(2Pt 2), S1–93.

41. Palmnas, M.S.A., Cowan, T.A., Bomhof, M.R., Su, J., Reimer, R.A., Vogel, H.J. et al. (2014). Low-dose aspartame consumption differentially affects gut microbiota-host metabolic interactions in the diet-induced obese rat. PloS One, 9(10), Article e109841. https://doi.org/10.1371/journal.pone.0109841

42. Carocho, M., Morales, P., Ferreira, I.C.F.R. (2017). Sweeteners as food additives in the XXI century: A review of what is known, and what is to come. Food and Chemical Toxicology, 107, 302–317. https://doi.org/10.1016/j.fct.2017.06.046

43. Uebanso, T., Ohnishi, A., Kitayama, R., Yoshimoto, A., Nakahashi, M., Shimohata, T. at al. (2017). Effects of low-dose noncaloric sweetener consumption on gut microbiota in mice. Nutrients, 9(6), Article 662. https://doi.org/10.3390/nu9060662

44. Bian, X., Chi, L., Gao, B., Tu, P., Ru, H., Lu, K. (2017). Gut microbiome response to sucralose and its potential role in inducing liver inflammation in mice. Frontiers in Physiology, 8(Jul), Article 487. https://doi.org/10.3389/fphys.2017.00487

45. Oser, B.L., Carson, S., Cox, G.E., Vogin, E.E., Sternberg, S.S. (1975). Chronic toxicity study of cylamate-saccharin (10:1) in rats. Toxicology, 4(3), 315–330.

46. Matsui, M., Hayashi, N., Konuma, H., Tanimura, A., Kurata, H. (1976). Studies on metabolism of food additives by microorganisms inhabiting gastrointestinal tract (IV): Fate of faecal flora in monkey administered orally sodium cyclamate and detection of sodium cyclamate assimilating bacteria in vitro by anaerobic culture. Journal of the Food Hygienic Society of Japan, 17(1), 54–58. https://doi.org/10.3358/shokueishi.17.54

47. JECFA. (2004). 3.1.8. Neotame. In evaluation of certain food additives and contaminants. Sixty-first report of the Joint FAO/ WHO Expert committee on food additives (JECFA), Rome, Italy. WHO technical report series no 922Geneva, Switzerland: World Health Organization (WHO). Retrieved from https://apps.who.int/iris/bitstream/handle/10665/42849/WHO_TRS_922.pdf?sequence=1. Accessed April 16, 2021

48. Chi, L., Bian, X., Gao, B., Tu, P., Lai, Y., Ru, H. et al. (2018). Effects of the artificial sweetener neotame on the gut microbiome and fecal metabolites in mice. Molecules, 23(2), Article 367. https://doi.org/10.3390/molecules23020367

49. Walters, D. E. (1995). Using models to understand and design sweeteners. Journal of chemical education, 72(8), 680–683.

50. Halmos, E.P., Mack, A., Gibson, P.R. (2019). Review article: Emulsifiers in the food supply and implications for gastrointestinal disease. Alimentary Pharmacology and Therapeutics, 49(1), 41–50. https://doi.org/10.1111/apt.15045

51. Chassaing, B., Koren, O., Goodrich, J.K., Poole, A.C., Srinivasan, S., Ley, R.E. et al. (2015). Dietary emulsifiers impact the

52. mouse gut microbiota promoting colitis and metabolic syndrome. Nature, 519(7541), 92–96. https://doi.org/10.1038/nature14232

53. McElligott, T.F., Hurst, E.W. (1968). Long-term feeding studies of methyl ethyl cellulose (‘Edifas’ A) and sodium carboxymethyl cellulose (‘Edifas’ B) in rats and mice. Food and Cosmetics Toxicology, 6(4), 449–460. https://doi.org/10.1016/0015–6264(68)90135–1

54. Swidsinski, A., Ung, V., Sydora, B.C., Loening-Baucke, V., Doerffel, Y., Verstraelen, H. et al. (2009). Bacterial overgrowth and inflammation of small intestine after carboxymethylcellulose ingestion in genetically susceptible mice. Inflammatory Bowel Diseases, 15(3), 359–364. https://doi.org/10.1002/ibd.20763

55. Viennois, E., Merlin, D., Gewirtz, A. T., Chassaing, B. (2017). Dietary emulsifier-induced low-grade inflammation promotes colon carcinogenesis. Cancer Research, 77(1), 27–40. https://doi.org/10.1158/0008–5472.CAN-16–1359

56. Chassaing, B., Van De Wiele, T., De Bodt, J., Marzorati, M., Gewirtz, A.T. (2017). Dietary emulsifiers directly alter human microbiota composition and gene expression ex vivo potentiating intestinal inflammation. Gut, 66(8), 1414–1427. https://doi.org/10.1136/gutjnl-2016–313099

57. Lambrecht, E., Van Coillie, E., Van Meervenne, E., Boon, N., Heyndrickx, M., Van de Wiele, T. (2019). Commensal E. coli rapidly transfer antibiotic resistance genes to human intestinal microbiota in the Mucosal Simulator of the Human Intestinal Microbial Ecosystem (M-SHIME). International Journal of Food Microbiology, 311, Article 108357. https://doi.org/10.1016/j.ijfoodmicro.2019.108357

58. Singh, R. K., Wheildon, N., Ishikawa, S. (2016). Food additive P-80 impacts mouse gut microbiota promoting intestinal inflammation, obesity and liver dysfunction. SOJ microbiology and infectious diseases, 4(1), Article 148. https://doi.org/10.15226/sojmid/4/1/00148

59. Roberts, C.L., Keita, A.V., Duncan, S.H., O’Kennedy, N., Soderholm, J.D., Rhodes, J.M. et al. (2010). Translocation of Crohn’s disease Escherichia coli across M-cells: Contrasting effects of soluble plant fibres and emulsifiers. Gut, 59(10), 1331–1339. https://doi.org/10.1136/gut.2009.195370

60. Irwin, S.V., Fisher, P., Graham, E., Malek, A., Robidoux, A. (2017). Sulfites inhibit the growth of four species of beneficial gut bacteria at concentrations regarded as safe for food. PloS One, 12(10), Article e0186629. https://doi.org/10.1371/journal.pone.0186629

61. Lauková, A., Chrastinová, Ľ., Plachá, I., Kandričáková, A., Szabóová, R., Strompfová, V. et al. (2014). Beneficial effect of lantibiotic nisin in rabbit husbandry. Probiotics and Antimicrobial Proteins, 6(1), 41–46. https://doi.org/10.1007/s12602–014–9156–4

62. Gough, R., Rubio, R. C., O’Connor, P. M., Crispie, F., Brodkorb, A., Miao, S. et al. (2018). Oral delivery of nisin in resistant starch based matrices alters the gut microbiota in mice. Frontiers in Microbiology, 9(JUN), Article 1186. https://doi.org/10.3389/fmicb.2018.01186

63. Hrncirova, L., Hudcovic, T., Sukova, E., Machova, V., Trckova, E., Krejsek, J. et al. (2019). Human gut microbes are susceptible to antimicrobial food additives in vitro. Folia Microbiologica, 64(4), 497–508. https://doi.org/10.1007/s12223–018–00674-z

64. Hrncirova, L., Machova, V., Trckova, E., Krejsek, J., Hrncir, T. (2019). Food preservatives induce proteobacteria dysbiosis in human-microbiota associated Nod2-deficient mice. Microorganisms, 7(10), Article 383. https://doi.org/10.3390/microorganisms7100383

65. Weir, A., Westerhoff, P., Fabricius, L., Hristovski, K., Von Goetz, N. (2012). Titanium dioxide nanoparticles in food and personal care products. Environmental Science and Technology, 46(4), 2242–2250. https://doi.org/10.1021/es204168d

66. Bettini, S., Boutet-Robinet, E., Cartier, C., Coméra, C., Gaultier, E., Dupuy, J. et al. (2017). Food-grade TiO2 impairs intestinal and systemic immune homeostasis, initiates preneoplastic lesions and promotes aberrant crypt development in the rat colon. Scientific Reports, 7, Article 40373. https://doi.org/10.1038/srep40373

67. Bakkali, F., Averbeck, S., Averbeck, D., Idaomar, M. (2008). Biological effects of essential oils — a review. Food and Chemical Toxicology, 46(2), 446–475. https://doi.org/10.1016/j.fct.2007.09.106

68. Thapa, D. (2015). Studies on the influence of essential oils on human gut bacteria and colonic cells. Doctoral dissertation University of Aberdeen. Retrieved from https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.655666. Accessed April 21, 2021.

69. Skoufos, I., Giannenas, I., Tontis, D., Bartzanas, T., Kittas, C., Panagakis, P. et al (2016). Effects of oregano essential oil and attapulgite on growth performance, intestinal microbiota and morphometry in broilers. South African Journal of Animal Science, 46(1), 77–88. https://doi.org/10.4314/sajas.v46i1.10

70. Abouelezz, K., Abou-Hadied, M., Yuan, J., Elokil, A.A., Wang, G., Wang, S. et al. (2019). Nutritional impacts of dietary oregano and Enviva essential oils on the performance, gut microbiota and blood biochemicals of growing ducks. Animal, 13(10), 2216–2222. https://doi.org/10.1017/S1751731119000508

71. Bento, M. H. L., Ouwehand, A. C., Tiihonen, K., Lahtinen, S., Nurminen, P., Saarinen, M. T. et al. (2013). Essential oils and their use in animal feeds for monogastric animals — effects on feed quality, gut microbiota, growth performance and food safety: A review. Veterinarni Medicina, 58(9), 449–458. https://doi.org/10.17221/7029-VETMED

72. Li, Y., Fu, X., Ma, X., Geng, S., Jiang, X., Huang, Q. et al. (2018). Intestinal microbiome-metabolome responses to essential oils in piglets. Frontiers in Microbiology, 9(AUG), Article 1988. https://doi.org/10.3389/fmicb.2018.01988


Review

For citations:


Kornienko V.Yu., Minaev M.Yu. An effect of food additives on microbiome. Theory and practice of meat processing. 2021;6(3):259-268. https://doi.org/10.21323/2414-438X-2021-6-3-259-268

Views: 540


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)