Detection of soybean by real-time PCR in the samples subjected to deep technological processing
https://doi.org/10.21323/2414-438X-2019-4-4-23-27
Abstract
During deep technological processing, DNA of food product components (specifically, in canned foods) is subjected to strong degradation, which makes the PCR-based food components identification more difficult. In this work, a primer-probe system is proposed, which was selected for the multi-copy region of long terminal repeat (LTR) of soybean (Glycine max). We confirmed its high sensitivity and specificity for soybean detection by real-time PCR. Using the selected system, we successfully analyzed the samples of meat-and-plant canned foods and other food products subjected to deep technological processing — tofu, preserved tofu, soy sauces, confectionary products containing soy lecithin. To compare with these samples, real-time PCR was carried out using the primer-probe system selected for the single-copy le1 gene. In terms of sensitivity, the use of the primer-probe system specific to the single-copy region was significantly inferior to the primer-probe system specific to the LTR region. The difference in the rate of degradation of these genomic DNA regions of Glycine max was found.
About the Authors
K. A. KurbakovRussian Federation
Konstantin A. Kurbakov — engineer of laboratory of hygiene of manufacture and microbiology, 109316, Moscow, Talalikhina str., 26. Tel: +7–495–676–60–11
E. A. Konorov
Russian Federation
Evgenii A. Konorov — candidate of biological sciences, Senior researcher of Laboratory of molecular biology and bioinformatics, 109316, Moscow, Talalikhina str., 26. Tel: +7–495–676–60–11
V. N. Zhulinkova
Russian Federation
Valentina N. Zhulinkova — engineer of laboratory of hygiene of manufacture and microbiology, 109316, Moscow, Talalikhina str., 26. Tel: +7(905)780–60–76
M. Yu. Minaev
Russian Federation
Mihail Yu. Minaev — candidate of technical sciences, head of Laboratory of molecular biology and bioinformatics, 109316, Moscow, Talalikhina str., 26. Tel.: +7–495–676–60–11
References
1. Scharf, A., Kasel, U., Wichmann, G., Besler, M. (2013). Performance of ELISA and PCR methods for the determination of allergens in food: an evaluation of six years of proficiency testing for soy (Glycine max L.) and wheat gluten (Triticum aestivum L.). Journal of agricultural and food chemistry, 61(43), 10261–10272. DOI: 10.1021/jf402619d
2. Köppel, R., Dvorak, V., Zimmerli, F., Breitenmoser, A., Eugster, A., Waiblinger, H. U. (2010). Two tetraplex real-time PCR for the detection and quantification of DNA from eight allergens in food. European Food Research and Technology, 230(3), 367–374. DOI: 10.1007/s00217–009–1164–3
3. Costa, J., Amaral, J. S., Grazina, L., Oliveira, M. B. P. P, Mafra, I. (2017). Matrix-normalised real-time PCR approach to quantify soybean as a potential food allergen as affected by thermal processing. Food chemistry, 221, 1843–1850. DOI: 10.1016/j.foodchem.2016.10.091
4. Murray, S. R., Butler, R. C., Timmerman-Vaughan, G. M. (2009). Quantitative real-time PCR assays to detect DNA degradation in soy-based food products. Journal of the Science of Food and Agriculture, 89(7), 1137–1144. DOI: 10.1002/jsfa.3563
5. Ladenburger, E. M., Dehmer, M., Grünberg, R., Waiblinger, H. U., Stoll, D., Bergemann, J. (2018). Highly sensitive matrixindependent quantification of major food allergens peanut and soy by competitive real-time PCR targeting mitochondrial DNA. Journal of AOAC International, 101(1), 170–184. DOI: 10.5740/jaoacint.17–0406
6. Mayer, W., Schuller, M., Viehauser, M. C., Hochegger, R. (2019). Quantification of the allergen soy (Glycine max) in food using digital droplet PCR (ddPCR). European Food Research and Technology, 245(2), 499–509. DOI: 10.1007/s00217–018–3182–5
7. Pegels, N., González, I., López-Calleja, I., Fernández, S., García, T., Martín, R. (2012). Evaluation of a TaqMan real-time PCR assay for detection of chicken, turkey, duck, and goose material in highly processed industrial feed samples. Poultry Science, 91(7), 1709–1719. DOI: 10.3382/ps.2011–01954
8. Ballin, N. Z., Vogensen, F. K., Karlsson, A. H. (2012). PCR amplification of repetitive sequences as a possible approach in relative species quantification. Meat science, 90(2), 438–443. DOI: 10.1016/j.meatsci.2011.09.002
9. Yamakawa, H., Akiyama, H., Endo, Y., Miyatake, K., Sakata, K., Sakai, S., Moriyama, T., Urisu, A., Maitani, T (2007). Specific detection of soybean residues in processed foods by the polymerase chain reaction. Bioscience, biotechnology, and biochemistry, 71(1), 269–272. DOI: 10.1271/bbb.60485
10. Mano, J., Nishitsuji, Y., Kikuchi, Y., Fukudome, S.-I., Hayashida, T., Kawakami, H., Kurimoto, Y., Noguchi, A., Kondo, K., Teshima, R. Takabatake, R., Kitta, K. (2017). Quantification of DNA frag mentation in processed foods using real-time PCR. Food chemistry, 226, 149–155. DOI: 10.1016/j.foodchem.2017.01.064
11. Bauer, T., Weller, P., Hammes, W. P., Hertel, C. (2003). The effect of processing parameters on DNA degradation in food. European Food Research and Technology, 217(4), 338–343 DOI: 10.1007/s00217–003–0743-y
12. Caldwell, J.M., Pérez-Díaz, I.M., Sandeep, K.P., Simunovic, J., Harris, K., Osborne, J.A., Hassan, H.M. (2015). Mitochondrial DNA Fragmentation as a Molecular Tool to Monitor Thermal Processing of Plant-Derived, Low-Acid Foods, and Biomaterials. Journal of food science, 80(8), M1804-M1814. DOI: 10.1111/1750–3841.12937
13. Wawrzynski, A., Ashfield, T., Chen, N.W.G., Young, N.D., Innes, R.W. (2008). Replication of nonautonomous retroelements in soybean appears to be both recent and common. Plant Physiology, 148(4), 1760–1771. DOI: 10.1104/pp.108.127910
14. GenBank®. Bethesda, MD, USA: National Center for Biotechnology Information (NCBI), US National Library of Medicine; 2017. Available from: http://www.ncbi.nlm.nih.gov/
15. Primer-BLAST. Bethesda, MD, USA: National Center for Biotechnology Information, U. S. National Library of Medicine; 2017. Available from: https://www.ncbi.nlm.nih.gov/tools/primer-blast/index.cgi
16. OligoAnalyzer 3.1, Integrated DNA Technologies, Inc., Coralville, IA, USA; 2017. Available from: http://eu.idtdna.com/calc/analyzer.
17. Microsoft Excel 2016, Microsoft, Redmond, WA, USA; 2016.
18. Arun, Ö. Ö., Muratoğlu, K., Eker, F. Y. (2016). The effect of heat processing on pcr detection of genetically modified soy in bakery products. Journal of Food and Health, 2(3), 130–139. DOI: 10.3153/jfhs16014
19. Bauer, T., Hammes, W. P., Haase, N. U., Hertel, C. (2004). Effect of food components and processing parameters on DNA degradation in food. Environmental Biosafety Research, 3(4), 215–223. DOI: 10.1051/ebr:2005005
20. Kostenko, A.A (2015). Methods of production of cheese tofu. Scientific works of Dalrybvtuz, 35, 143–148. (in Russian)
21. Hefle, S. L., Lambrecht, D. M., Nordlee, J. A. (2005). Soy sauce retains allergenicity through the fermentation/production process. Journal of Allergy and Clinical Immunology, 115(2), S32. DOI: 10.1016/j.jaci.2004.12.143
Review
For citations:
Kurbakov K.A., Konorov E.A., Zhulinkova V.N., Minaev M.Yu. Detection of soybean by real-time PCR in the samples subjected to deep technological processing. Theory and practice of meat processing. 2019;4(4):23-27. https://doi.org/10.21323/2414-438X-2019-4-4-23-27