Preview

Theory and practice of meat processing

Advanced search

Antioxidant potential of protein hydrolysates from poultry by-products obtained by microbial fermentation.

https://doi.org/10.21323/2414-438X-2025-10-4-393-405

Abstract

Protein hydrolysates and bioactive peptides are promising components with antioxidant properties. This study aimed to evaluate the antioxidant activity of protein hydrolysates obtained from microbial fermentation of broiler chicken gizzards using a concentration of bifidobacteria and propionic acid bacteria incorporated into whey. The total antioxidant capacity was determined by the FRAP method, the antiradical activity was determined using the DPPH assay with the detection of the IC50 index to assess the antioxidant potential. The results showed that the FRAP antioxidant activity of the experimental hydrolysate sample obtained by fermentation using bifidobacteria was 30 % lower than that of other samples. However, this sample exhibited the greatest free radical scavenging effect, with an IC50 of 1.363 mg/g. The content of free amino acids and peptides was also determined by UHPLC combined with mass spectrometry. The properties of peptides were identified by the in silico method using the BioPep and PeptideRanker databases. The research results showed an increase in the content of free amino acids in hydrolysates during microbial fermentation. The content of a bioactive peptide with antioxidant properties — VW, as well as several peptides with potentially high antioxidant properties, was revealed. The results obtained show the prospects for obtaining protein hydrolysates from poultry by-products by their microbial fermentation, as well as the need for further deeper studies of peptides with potential antioxidant properties.

About the Authors

O. V. Zinina
South Ural State University (National Research University)
Russian Federation

Oksana V. Zinina, Doctor of Technical Sciences, Docent, Department of Food and Biotechnology



M. B. Rebezov
V. M. Gorbatov Federal Research Centre for Food Systems
Russian Federation

Maksim B. Rebezov, Doctor of Agricultural Sciences, Professor, Leading Researcher



D. V. Khvostov
V. M. Gorbatov Federal Research Centre for Food Systems
Russian Federation

Daniil V. Khvostov, Candidate of Technical Sciences, Researcher, Laboratory “Molecular Biology and Bioinformatics”



N. V. Kupaeva
V. M. Gorbatov Federal Research Centre for Food Systems
Russian Federation

Nadezhda V. Kupaeva, Candidate of Technical Sciences, Researcher, Experimental Clinic and Research Laboratory for Bioactive Substances of Animal Origin



M. E. Spirina
V. M. Gorbatov Federal Research Centre for Food Systems
Russian Federation

Maria E. Spirina, Research Engineer, Experimental Clinic-Laboratory of Biologically Active Substances of Animal Origin



References

1. Knorr, D., Augustin, M.A. (2024). The future of foods. Sustain able Food Technology, 2(2), 253–265. https://doi.org/10.1039/d3fb00199g

2. Orlova, E.S., El-Sohaimy, S.A., Rebezov, M.B. (2023). Evaluation of the antioxidant and antimicrobial activity of plant bioactive compounds as natural preservatives. Agrarian Science, 8, 143–150. (In Russian) https://doi.org/10.32634/0869-8155-2023-373-8-143-150

3. Nataraj, A., Govindan, S., Ramani, P., Subbaiah, K. A., Sathianarayanan, S., Venkidasamy, B. et al. (2022). Antioxidant, anti-tumour, and anticoagulant activities of polysaccha ride from Calocybe indica (APK2). Antioxidants, 11(9), Article 1694. https://doi.org/10.3390/antiox11091694

4. Fatkullin, R.I., Kalinina, I.V., Naumenko, N.V., Popova, N.V., Naumenko, E.E., Ivanišová, E. et al. (2023). Controlled coacervation of antioxidants as a way to produce functional food ingredients with increased bioavailability. Agrarian Science, 6, 116–120. (In Russian) https://doi.org/10.32634/0869-8155-2023-371-6-116-120

5. Imran, M., Ghorat, F., Ul-Haq, I., Ur-Rehman, H., Aslam, F., Heydari, M. et al. (2020). Lycopene as a natural antioxidant used to prevent human health disorders. Antioxidants, 9(8), Article 706. https://doi.org/10.3390/antiox9080706

6. Ulitina, E.A., Valieva, Sh.S., Tikhonov, S.L., Tikhonova, N.V. (2024). A new antimicrobial food peptide: Characteristics, properties and effectiveness evaluation. Agrarian Science, 4, 132–137. (In Russian) https://doi.org/10.32634/0869-8155-2024-381-4-132-137

7. Zinina, O.V., Nikolina, A.D., Khvostov, D.V., Rebezov, M.B., Zavyalov, S.N., Akhmedzyanov R. V. (2023). Protein hydrolysate as a source of bioactive peptides in diabetic food prod ucts. Food Systems, 6(4), 440–448. (In Russian) https://doi.org/10.21323/2618-9771-2023-6-4-440-448

8. Wang, Y., Sun, Y., Wang, X., Wang, Y., Liao, L., Zhang, Y. et al. (2022). Novel antioxidant peptides from Yak bones collagen enhanced the capacities of antiaging and antioxidant in Caenorhabditis elegans. Journal of Functional Foods, 89, Article 104933. https://doi.org/10.1016/j.jff.2022.104933

9. Xu, B., Wang, X., Zheng, Y., Li, Y., Guo, M., Yan, Z. (2022). Novel antioxidant peptides identified in millet bran glute lin-2 hydrolysates: Purification, in silico characterization and security prediction, and stability profiles under different food processing conditions. LWT, 164, Article 113634. https://doi.org/10.1016/j.lwt.2022.113634

10. Dai, C., Dai, L., Yu, F.-J., Li, X.-N., Wang, G.-X., Chen, J. et al. (2020). Chemical and biological characteristics of hydrolysate of crucian carp swim bladder: Focus on preventing ulcerative colitis. Journal of Functional Foods, 75, Article 104256. https://doi.org/10.1016/j.jff.2020.104256

11. Juknienė, I., Jonnagiri, N.P.K.R., Mačionienė, I., Zakarienė, G., Stankevičienė, J., Sinkevičienė, I. et al. (2025). Sustainable formulation of chewing candies using liver hy drolysates with antioxidant and antimicrobial properties. Microorganisms, 13(8), Article 1882. https://doi.org/10.3390/microorganisms13081882

12. Shen, J., Zhong, B., Fu, L., Liu, B., Xia, W., Jiang, Q. (2025). Antioxidant property and functionality of protein hydroly sate from Chinese softshell turtle (Pelodiscus sinensis). LWT, 217, Article 117408. https://doi.org/10.1016/j.lwt.2025.117408

13. Chalamaiah, M., Yu, W., Wu, J. (2018). Immunomodulatory and anticancer protein hydrolysates (peptides) from food proteins: A review. Food Chemistry, 15, 205–222. https://doi.org/10.1016/j.foodchem.2017.10.087

14. Kanwate, B.W., Karkal, S.S., Kudre, T.G. (2024). Impact of antioxidant potential of rohu (Labeo rohita) swim bladder gelatin hydrolysate on oxidative stability, textural and sensory properties of fish sausage enriched with polyunsaturated fatty acids. Journal of Food Science and Technology, 61, 1083– 1093. https://doi.org/10.1007/s13197-023-05901-1

15. López-Medina, F.A., Dublán-García, O., Morachis-Valdez, A.G., Saucedo-Vence, K., López-García, G., Díaz-Bandera, D. et al. (2025). Biopolymeric hydrolysates from Dosi dicus gigas: Functional applications and shelf-life extension in squid sausages. Polymers, 17(7), Article 839. https://doi.org/10.3390/polym17070839

16. Wang, W.-Y., Zhao, Y.-Q., Zhao, G.-X., Chi, C.-F., Wang, B. (2020). Antioxidant Peptides from collagen hydrolysate of redlip croaker (Pseudosciaena polyactis) scales: Preparation, characterization, and cytoprotective effects on H2O2-dam aged HepG2 cells. Marine Drugs, 18, Article 156. https://doi.org/10.3390/md18030156

17. Noman, A., Wang, Y., Zhang, C., Yin, L., Abed, Sh.M. (2022). Fractionation and purification of antioxidant peptides from Chinese sturgeon (Acipenser sinensis) protein hydrolysates prepared using papain and alcalase 2.4L. Arabian Journal of Chemistry, 15(12), Article 104368. https://doi.org/10.1016/j.arabjc.2022.104368

18. Zhang, W., Al-Wraikata, M., Li, L., Liu, Y. (2024). Physicochemical properties, antioxidant and antidiabetic activities of different hydrolysates of goat milk protein. Journal of Dairy Science, 107(12), 10174–10189. https://doi.org/10.3168/jds.2024-24977

19. Venegas-Ortega, M.G., Flores-Gallegos, A.C., Martinez-Hernandez, J.L., Aguilar, C.N., Nevarez-Moorillon, G.V. (2019). Production of bioactive peptides from lactic acid bacteria: A sustainable approach for healthier foods. Comprehensive Reviews in Food Science and Food Safety, 18(4), 1039–1051. https://doi.org/10.1111/1541-4337.12455

20. Fan, M., Guo, T., Li, W., Chen, J., Li, F., Wang, Ch. et al. (2019). Isolation and identification of novel casein-derived bioactive peptides and potential functions in fermented casein with Lactobacillus helveticus. Food Science and Human Wellness, 8(2), 156–176. https://doi.org/10.1016/j.fshw.2019.03.010

21. Mo, Q., You, S., Fu, H., Wang, D., Zhang, J., Wang, C. et al. (2022). Purification and identification of antioxidant peptides from rice fermentation of Lactobacillus plantarum and their protective effects on UVA-induced oxidative stress in skin. Antioxidants, 11(12), Article 2333. https://doi.org/10.3390/antiox11122333

22. de Carvalho, A.P.A., Conte-Junior, C.A. (2024). Health and bioactive compounds of fermented foods and by-products. Fermentation, 10(1), Article 13. https://doi.org/10.3390/fermentation10010013

23. Zinina, O., Merenkova, S., Rebezov, M., Galimov, D., Khayrullin, M., Burkov, P. (2022). Physicochemical, functional, and technological properties of protein hydrolysates obtained by microbial fermentation of broiler chicken gizzards. Fermentation, 8(7), Article 317. https://doi.org/10.3390/fermentation8070317

24. Mora, L., Gallego, M., Toldrá, F. (2018). ACEI-inhibitory pep tides naturally generated in meat and meat products and their health relevance. Nutrients, 10(9), Article 1259. https://doi.org/10.3390/nu10091259

25. Li, P., Xu, F., Zhou, H., Gao, Y., Zhu, H., Nie, W. et al. (2022). Evolution of antioxidant peptides and their proteomic homology during processing of Jinhua ham. LWT, 166, Article 113771. https://doi.org/10.1016/j.lwt.2022.113771

26. Chernukha, I. M., Mashentseva, N. G., Afanasev, D. A., Vostrikova, N. L. (2019). Biologically active peptides of meat and meat product proteins: A review Part 1. General infor mation about biologically active peptides of meat and meatproducts. Theory and Practice of Meat Processing, 4(4), 12–16. https://doi.org/10.21323/2414-438X-2019-4-4-12-16

27. Bhat, Z.F., Kumar, S., Bhat, H.F. (2015). Bioactive peptides of animal origin: A review. Journal of Food Science and Technology, 52, 5377–5392. https://doi.org/10.1007/s13197-015-1731-5

28. Ryder, K., Bekhit, A.E.D., McConnell, M., Carne, A. (2016). Towards generation of bioactive peptides from meat industry waste proteins: Generation of peptides using commercial microbial proteases. Food Chemistry, 208, 42–50. https://doi.org/10.1016/j.foodchem.2016.03.121

29. Zhang, P., Seow, K., Wein, L., Steven, R., Case, R.J., Wang, Y. et al. (2025). Production of nutritional protein hydrolysates by fermentation of black soldier fly larvae. Fermentation, 11(9), Article 524. https://doi.org/10.3390/fermentation11090524

30. Chatterjee, A., Kanawjia, S.K., Khetra, Y., Saini, P., Mann, B. (2015). Response surface analyses for administering production of whey protein hydrolysate with hypotensive and antioxidant bioactivity. Indian Journal of Dairy Science, 68(2), 111–119.

31. Chai, K.F., Voo, A.Y.H., Chen, W.N. (2020). Bioactive pep tides from food fermentation: A comprehensive review of their sources, bioactivities, applications, and future develop ment. Comprehensive Reviews in Food Science and Food Safe ty, 19(6), 3825–3885. https://doi.org/10.1111/1541-4337.12651

32. Zinina, O., Merenkova, S., Galimov, D. (2021). Optimization of microbial hydrolysis parameters of poultry by-products using probiotic microorganisms to obtain protein hydroly sates. Fermentation, 7(3), Article 122. https://doi.org/10.3390/fermentation7030122

33. Chernukha, I., Kupaeva N., Kotenkova, E., Khvostov, D. (2022). Differences in antioxidant potential of Allium husk of red, yellow, and white varieties. Antioxidants, 11(7), Article 1243. https://doi.org/10.3390/antiox11071243

34. You, L., Zhao, M., Regenstein, J.M., Ren, J. (2011). In vitro antioxidant activity and in vivo anti-fatigue effect of loach (Mis gurnus anguillicaudatus) peptides prepared by papain digestion. Food Chemistry, 124, 188–194. https://doi:10.1016/j.foodchem.2010.06.007

35. Chernukha, I., Kotenkova, E., Derbeneva, S., Khvostov, D. (2021). Bioactive compounds of porcine hearts and aortas may improve cardiovascular disorders in humans. International Journal of Environmental Research and Public Health, 18(14), Article 7330. https://doi.org/10.3390/ijerph18147330

36. Khvostov, D.V., Vostrikova, N.L., Chernukha, I.M. (2022). Methodology for the identification of bioactive and marker peptides in the organs of cattle and pigs. Theory and Practice of Meat Processing, 7(2), 118–124. https://doi.org/10.21323/2414-438X-2022-7-2-118-124

37. Tsugawa, H., Nakabayashi, R., Mori, T., Yamada, Y., Takahashi, M., Rai, A. et al. (2019). A cheminformatics approach to characterize metabolomes in stable-isotope-labeled organ isms. Nature Methods, 16, 295–298. http://doi.org/10.1038/s41592-019-0358-2

38. Karkischenko, V.N., Skvortsova, V.I., Gasanov, M.T., Fokin, Y.V., Nesterov, M.S., Petrova, N.V. et al. (2021). In haled [D-Ala2]-Dynorphin 1–6 prevents hyperacetylation and release of high mobility group box 1 in a mouse model of acute lung injury. Journal of Immunology Research, 2021, Article 4414544. https://doi.org/10.1155/2021/4414544

39. Minkiewicz, P., Iwaniak, A., Darewicz, M., (2019). BIOPEP UWM database of bioactive peptides: Current opportunities. International Journal of Molecular Sciences, 20(23), Ar ticle 5978. https://doi.org/10.3390/ijms20235978

40. PeptideRanker. Retrieved from bioware.ucd.ie. Accessed November 17, 2025

41. Assaad, H., Zhou, L., Carroll, R.J., Wu, G. (2014). Rapid publication-ready MS-Word tables for one-way ANOVA. Spring er Plus, 3, Article 474. https://doi.org/10.1186/2193-1801-3-474

42. Borrajo, P., Pateiro, M., Barba, F.J., Mora, L., Franco, D., Toldrá, F. et al. (2019). Antioxidant and antimicrobial activity of peptides extracted from meat by-products: Areview. Food Analytical Methods, 12, 2401–2415. https://doi.org/10.1007/s12161-019-01595-4

43. Wong, F.-C., Xiao, J., Wang, S., Ee, K.Y., Chai, T.-T. (2020). Advances on the antioxidant peptides from edible plant sources. Trends in Food Science and Technology, 99(8), 44–57. https://doi.org/10.1016/j.tifs.2020.02.012

44. Lin, L., Zeng, Q., Liu, K., Li, C., Chen, B., Shen, Y. (2025). A multiscale analytical strategy for probing the mechanisms underlying an antioxidant peptide: From molecular modeling to experimental validation. Microchemical Journal, 228, Article 115689. https://doi.org/10.1016/j.microc.2025.115689

45. Liu, R., Xing, L., Fu, Q., Zhou, G.-h., Zhang, W.-g. (2016). A review of antioxidant peptides derived from meat muscle and by-products. Antioxidants, 5(3), Article 32. https://doi.org/10.3390/antiox5030032

46. Wali, A., Dongmulati, N., Turdu, G., Hu, A., He, H., Zhao, X. et al. (2025). Antioxidant peptides of sheep placental extract digestion product: In vitro and in silico study. Biochemical and Biophysical Research Communications, 787, Article 152769. https://doi.org/10.1016/j.bbrc.2025.152769

47. Toldrá, F., Reig, M., Aristoy, M.–C., Mora, L. (2018). Generation of bioactive peptides during food processing. Food Chemistry, 267, 395–404. https://doi.org/10.1016/j.foodchem.2017.06.119

48. Abbasi, S., Moslehishad, M., Salami, M. (2022). Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa. International Journal of Biological Macromolecules, 213, 602–609. https://doi.org/10.1016/j.ijbiomac.2022.05.189

49. Mundi, S., Aluko R. E. (2014). Inhibitory properties of kidney bean protein hydrolysate and its membrane fractions against renin, angiotensin converting enzyme, and free radicals. Austin Journal of Nutrition and Food Sciences, 2(1), Article 1008.

50. Alemán, A., Giménez, B., Pérez-Santin, E., Gómez-Guillén, M. C., Montero P. (2011). Contribution of Leu and Hypresi dues to antioxidant and ACE-inhibitory activities of peptide se quences isolated from squid gelatin hydrolysate. Food Chemistry, 125(2), 334–341. https://doi.org/10.1016/j.foodchem.2010.08.058

51. Xiang, Z., Xue, Q., Gao, P., Yu, H., Wu, M., Zhao, Z. et al. (2023). Antioxidant peptides from edible aquatic animals: Preparation method, mechanism of action, and structure activity relationships. Food Chemistry, 404(Part B), Article 134701. https://doi.org/10.1016/j.foodchem.2022.134701

52. Matemu, A., Nakamura, S., Katayama, S. (2021). Health benefits of antioxidative peptides derived from legume proteins with a high amino acid score. Antioxidants, 10(2), Article 316. https://doi.org/10.3390/antiox10020316

53. Nuñez, S.M., Cárdenas, C., Valencia, P., Pinto, M., Silva, J., Pino-Cortés, E. et al. (2023). Effect of adding bovine skin gelatin hydrolysates on antioxidant properties, texture, and color in chicken meat processing. Foods, 12(7), Article 1496. https://doi.org/10.3390/foods12071496

54. Wang, K., Han, L., Tan, Y., Hong, H., Luo, Y. (2023). Generation of novel antioxidant peptides from silver carp muscle hydrolysate: Gastrointestinal digestion stability and transepithelial absorption property. Food Chemistry, 403, Article 134136. https://doi.org/10.1016/j.foodchem.2022.134136

55. Saidi, S., Deratani, A., Belleville, M.-P., Amar, R.B. (2014). Antioxidant properties of peptide fractions from tuna dark muscle protein by-product hydrolysate produced by membrane fractionation process. Food Research International, 65(Part C), 329–336. https://doi.org/10.1016/j.foodres.2014.09.023

56. Pan, X., Zhao, Y.-Q., Hu, F.-Y., Wang, B. (2016). Preparationand identification of antioxidant peptides from protein hydrolysate of skate (Raja porosa) cartilage. Journal of Function al Foods, 25, 220–230. https://doi.org/10.1016/j.jff.2016.06.008

57. Udenigwe, C.C., Aluko R. E. (2012). Food protein-derived bioactive peptides: Production, processing, and potential health benefits. Journal of Food Science, 77(1), R11-R24. https://doi.org/10.1111/j.1750-3841.2011.02455.x

58. Anusha, R., Bindhu, O. (2016). Bioactive Peptides from Milk. In Milk Proteins. Chapter in a book: Structure to Biological Properties and Health Aspects. IntechOpen: London, United Kingdom, 2016. https://doi.org/10.5772/62993

59. Dineshbhai, C. K., Basaiawmoit, B., Sakure, A.A., Maurya, R., Bishnoi, M., Kondepudi, K.K. et al. (2022). Exploring the potential of Lactobacillus and Saccharomyces for biofunctionalities and the release of bioactive peptides from whey protein fermentate. Food Bioscience, 48, Article 101758. https://doi.org/10.1016/j.fbio.2022.101758

60. Wu, R., Wu, C., Liu, D., Yang, X., Huang, J., Zhang, J. et al. (2018). Antioxidant and anti-freezing peptides from salmon collagen hydrolysate prepared by bacterial extracellular pro tease. Food Chemistry, 248, 346–352. https://doi.org/10.1016/j.foodchem.2017.12.035

61. Guo, L., Harnedy, P.A., Li, B., Hou, H., Zhang, Z., Zhao, X. et al. (2014). Food protein-derived chelating peptides: Bio functional ingredients for dietary mineral bioavailability enhancement. Trends in Food Science and Technology, 37(2), 92–105. https://doi.org/10.1016/j.tifs.2014.02.007

62. Pan, X.Y., Wang, Y.M., Li, L., Chi, C.F., Wang, B. (2019). Four antioxidant peptides from protein hydrolysate of red sting ray (Dasyatis akajei) cartilages: Isolation, identification, and in vitro activity evaluation. Marine Drugs, 17(5), Article 263. https://doi.org/10.3390/md17050263

63. Jin, J.-E., Ahn, C.-B., Je, J.-Y. (2018). Purification and characterization of antioxidant peptides from enzymatically hydrolyzed ark shell (Scapharca subcrenata). Process Biochemistry, 72, 170–176. https://doi.org/10.1016/j.procbio.2018.06.001

64. Zhang, S., Qi, L., Li, D., Zhong, L., Wu, D., Lin, S. (2021). The regulatory mechanism of pulsed electric field (PEF) targeting at C-terminal glutamine of shrimp antioxidant peptide QMDDQ based on MD simulation. LWT, 141, Article 110930. https://doi.org/10.1016/j.lwt.2021.110930

65. Duan, X., Ocen, D., Wu, F., Li, M., Yang, N., Xu, J. et al. (2014). Purification and characterization of a natural antioxidant peptide from fertilized eggs. Food Research International, 56, 18–24. https://doi.org/10.1016/j.foodres.2013.12.016

66. Agrawal, H., Joshi, R., Gupta, M. (2019). Purification, identification and characterization of two novel antioxidant peptides from finger millet (Eleusine coracana) protein hydroly sate. Food Research International, 120, 697–707. https://doi.org/10.1016/j.foodres.2018.11.028

67. Ngueukam, A.A.P., Klang, M.J., Zokou, R., Boungo, G.T., Tonfack, F.D., Azeez, B.K. et al. (2023). Peptidomics analysis of soy protein hydrolysates — Antioxidant properties and mechanism of their inhibition of the oxidation of palm olein during frying cycles. Foods, 12(18), Article 3498. https://doi.org/10.3390/foods12183498

68. Agyei, D., Ongkudon, C.M., Wei, C.Y., Chan, A.S., Danquah, M.K. (2016). Bioprocess challenges to the isolation and purification of bioactive peptides. Food and Bioproducts Processing, 98, 244–256. https://doi.org/10.1016/j.fbp.2016.02.003

69. Barati, M., Javanmardi, F., Jazayeri, S.M.H.M., Jabbari, M., Rahmani, J., Barati, F. et al. (2020). Techniques, perspectives, and challenges of bioactive peptide generation: A com prehensive systematic review. Comprehensive Reviews in Food Science and Food Safety, 19(4), 1488–1520. https://doi.org/10.1111/1541-4337.12578

70. Li, Y., Yu, J. (2015). Research progress in structure-activity re lationship of bioactive peptides. Journal of Medicinal Food, 18(2), 147–156. https://doi.org/10.1089/jmf.2014.0028

71. Wei, G., Li, X., Wang, D., Zhao, B., Shi, Y., Huang, A. (2023). Discovery of specific antioxidant peptide from Chinese Da he black pig and hybrid pig dry-cured hams based on peptidomics strategy. Food Research International, 166, Article 112610. https://doi.org/10.1016/j.foodres.2023.112610

72. Fan, X., Han, Y., Sun, Y., Zhang, T., Tu, M., Du, L. et al. (2023). Preparation and characterization of duck liver-derived antioxidant peptides based on LC–MS/MS, molecular docking, and machine learning. LWT, 175, Article 114479. https://doi.org/10.1016/j.lwt.2023.114479

73. Verma, A.K., Chatli, M.K., Kumar, P., Mehta, N. (2019). In vitro assessment of antioxidant and antimicrobial activity of whole porcine-liver hydrolysates and its fractions. Animal Production Science, 59(4), 641–646. https://doi.org/10.1071/AN17047


Review

For citations:


Zinina O.V., Rebezov M.B., Khvostov D.V., Kupaeva N.V., Spirina M.E. Antioxidant potential of protein hydrolysates from poultry by-products obtained by microbial fermentation. Theory and practice of meat processing. 2025;10(4):393-405. https://doi.org/10.21323/2414-438X-2025-10-4-393-405

Views: 14

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)