Preview

Теория и практика переработки мяса

Расширенный поиск

Nutritional assessment and antioxidant potential of selected meat types consumed in Owhelogbo, Delta State, Nigeria

https://doi.org/10.21323/2414-438X-2024-9-4-343-359

Аннотация

The present study aims at evaluating the nutritional value and antioxidant potential of various meat types (beef, pork, chicken, catfish and snails) consumed in Owhelogbo, community in Isoko Local Government, Delta State, Nigeria. The different meat samples were analyzed for nutritional composition and antioxidant properties. The results obtained show that the protein content varied from 20.09 to 61.74%, while the fat content varied from 2.00 to 12.08%. The calcium content ranged from 10.30 to 143.73 mg/100 g, while the phosphorous content ranged from 100.85 to 300.11 mg/100g. The linoleic acid content was in a range from 10.91 to 29.54%, while the linolenic acid content ranged from 0.84 to 5.53%. The content of vitamin A and vitamin D varied from 4.61 to 110.69 µg/100g and 2.15 to 18.05 µg/100g, respectively. The DPPH free radical scavenging ability and FRAP inhibitory activities of the different meat types ranged from 50.84 to 65.64% and 0.88 to 1.59%, respectively. The levels of high density lipoprotein and low density lipoprotein were in a range from 13.34 to 21.90 mg/dL and 2.30 to 5.59 mg/dL, respectively. The level of low density lipoprotein was the lowest in snail meat (SN), which suggests that it may be useful in managing obesity and preventing disorders linked to lipids. Consequently, the results conclude that snail meat may be a more valuable and innovative source of animal protein than beef, pork, chicken, and catfish.

Об авторах

J. Owheruo
Delta State University of Science and Technology; School of Agriculture and Agricultural Technology, Department of Food Science and Technology, Federal University of Technology
Нигерия


G. Edo
Delta State University of Science and Technology; Department of Chemistry, College of Sciences, Al-Nahrain University
Нигерия


P. Akpoghelie
Delta State University of Science and Technology
Нигерия


A. Faturoti
School of Agriculture, Food and Natural Resources, Department of Food Science and Technology, Olusegun Agagu University of Science and Technology
Нигерия


E. Isoje
Delta State University of Science and Technology
Нигерия


U. Igbuku
Delta State University of Science and Technology
Нигерия


E. Oghroro
Faculty of Science, Department of Petroleum Chemistry, Delta State University of Science and Technology
Нигерия


D. Ahmed
Middle Technical University
Ирак


E. Yousif
Al-Nahrain University
Ирак


Kh. Zainulabdeen
Delta State University of Science and Technology
Нигерия


A. Mohammed
Higher Institute of Forensic Sciences, Al-Nahrain University
Ирак


A. Essaghah
Delta State University of Science and Technology
Нигерия


H. Umar
Operational Research Centre in Healthcare, Near East University
Кипр


Список литературы

1. Adhikari, S., Schop, M., de Boer, I. J. M., Huppertz, T. (2022). Protein quality in perspective: A review of protein quality metrics and their applications. Nutrients, 14(5), Article 947. https://doi.org/10.3390/nu14050947

2. Elmadfa, I., Meyer, A. L. (2017). Animal proteins as important contributors to a healthy human diet. Annual Review of Animal Biosciences, 5(1), 111–131. https://doi.org/10.1146/annurev-animal-022516-022943

3. Al-Jawaldeh, A., Abbass, M. M. S. (2022). Unhealthy dietary habits and obesity: The major risk factors beyond noncommunicable diseases in the eastern Mediterranean region. Frontiers in Nutrition, 9, Article 817808. https://doi.org/10.3389/fnut.2022.817808

4. Angell, B., Sanuade, O., Adetifa, I. M. O., Okeke, I. N., Adamu, A. L., Aliyu, M. H. et al. (2022). Population health outcomes in Nigeria compared with other west African countries, 1998–2019: A systematic analysis for the Global Burden of Disease Study. The Lancet, 399(10330), 1117–1129. https://doi.org/10.1016/S0140-6736(21)02722-7

5. Saini, R. K., Prasad, P., Sreedhar, R. V., Akhilender Naidu, K., Shang, X., Keum, Y.-S. (2021). Omega — 3 polyunsaturated fatty acids (PUFAs): Emerging plant and microbial sources, oxidative stability, bioavailability, and health benefits — A review. Antioxidants, 10(10), Article 1627. https://doi.org/10.3390/antiox10101627

6. Dassanayake, R., Somasiri, S., Mahanama, K., Premakumara, S. (2024). Fatty acid and sterol profiles of commonly available street foods in Sri Lanka: Comparison to other countries in the Asian Region. Journal of Food Processing and Preservation, 2024, Article 7350661. https://doi.org/10.1155/2024/7350661

7. Duan, Y., Gong, K., Xu, S., Zhang, F., Meng, X., Han, J. (2022). Regulation of cholesterol homeostasis in health and diseases: from mechanisms to targeted therapeutics. Signal Transduction and Targeted Therapy, 7(1), Article 265. https://doi.org/10.1038/s41392-022-01125-5

8. Janoušek, J., Pilařová, V., Macáková, K., Nomura, A., VeigaMatos, J., Silva, D. D. da et al. (2022). Vitamin D: Sources, physiological role, biokinetics, deficiency, therapeutic use, toxicity, and overview of analytical methods for detection of vitamin D and its metabolites. Critical Reviews in Clinical Laboratory Sciences, 59(8), 517–554. https://doi.org/10.1080/10408363.2022.2070595

9. Vinué, Á., Herrero-Cervera, A., González-Navarro, H. (2018). Understanding the impact of dietary cholesterol on chronic metabolic diseases through studies in rodent models. Nutrients, 10(7), Article 939. https://doi.org/10.3390/nu10070939

10. Frallicciardi, J., Melcr, J., Siginou, P., Marrink, S. J., Poolman, B. (2022). Membrane thickness, lipid phase and sterol type are determining factors in the permeability of membranes to small solutes. Nature Communications, 13(1), Article 1605. https://doi.org/10.1038/s41467-022-29272-x

11. Steinberg, D. (2013). In celebration of the 100th anniversary of the lipid hypothesis of atherosclerosis. Journal of Lipid Research, 54(11), 2946–2949. https://doi.org/10.1194/jlr.R043414

12. Geiker, N. R. W., Bertram, H. C., Mejborn, H., Dragsted, L. O., Kristensen, L., Carrascal, J. R. et al. (2021). Meat and human health — current knowledge and research gaps. Foods, 10(7), Article 1556. https://doi.org/10.3390/foods10071556

13. Sun, L., Yuan, J.-L., Chen, Q.-C., Xiao, W.-K., Ma, G.-P., Liang, J.-H. et al. (2022). Red meat consumption and risk for dyslipidaemia and inflammation: A systematic review and meta-analysis. Frontiers in Cardiovascular Medicine, 9, Article 996467. https://doi.org/10.3389/fcvm.2022.996467

14. di Corcia, M., Tartaglia, N., Polito, R., Ambrosi, A., Messina, G., Francavilla, V. C. et al. (2022). Functional properties of meat in athletes’ performance and recovery. International Journal of Environmental Research and Public Health, 19(9), Article 5145. https://doi.org/10.3390/ijerph19095145

15. Bronzato, S., Durante, A. (2017). A contemporary review of the relationship between red meat consumption and cardiovascular risk. International Journal of Preventive Medicine, 8(1), Article 40. https://doi.org/10.4103/ijpvm.IJPVM_206_16

16. Berberich, A. J., Hegele, R. A. (2021). A modern approach to dyslipidemia. Endocrine Reviews, 43(4), 611–653. https://doi.org/10.1210/endrev/bnab037

17. Cui, M.-Y., Yi, X., Zhu, D.-X., Wu, J. (2021). Aberrant lipid metabolism reprogramming and immune microenvironment for gastric cancer: A literature review. Translational Cancer Research, 10(8), 3829–3842. https://doi.org/10.21037/tcr-21-655

18. Cui, M.-Y., Yi, X., Cao, Z.-Z., Zhu, D.-X., Wu, J. (2022). Targeting strategies for aberrant lipid metabolism reprogramming and the immune microenvironment in esophageal cancer: A review. Journal of Oncology, 2022, 1–27. https://doi.org/10.1155/2022/4257359

19. Macho-González, A., Garcimartín, A., López-Oliva, M. E., Bastida, S., Benedí, J., Ros, G. et al. (2020). Can meat and meat-products induce oxidative stress? Antioxidants, 9(7), Article 638. https://doi.org/10.3390/antiox9070638

20. Borén, J., Chapman, M. J., Krauss, R. M., Packard, C. J., Bentzon, J. F., Binder, C. J. et al. (2020). Low-density lipoproteins cause atherosclerotic cardiovascular disease: Pathophysiological, genetic, and therapeutic insights: A consensus statement from the European Atherosclerosis Society Consensus Panel. European Heart Journal, 41(24), 2313–2330. https://doi.org/10.1093/eurheartj/ehz962

21. Soliman, G. A. (2019). Dietary fiber, atherosclerosis, and cardiovascular disease. Nutrients, 11(5), Article 1155. https://doi.org/10.3390/nu11051155

22. Jahan, M., Thomson, P. C., Wynn, P. C., Wang, B. (2021). The non-human glycan, N-glycolylneuraminic acid (Neu5Gc), is not expressed in all organs and skeletal muscles of nine animal species. Food Chemistry, 343, Article 128439. https://doi.org/10.1016/j.foodchem.2020.128439

23. Alfred, K. K., Jean-Paul, B. K. M., Hermann, C. W., Mirelle, B. A., Marcellin, D. K. (2019). Assessment of safety risks associated with pork meat sold on the market in Abidjan city (Côte d’Ivoire) using surveys and microbial testing. Heliyon, 5(7), Article e02172. https://doi.org/10.1016/j.heliyon.2019.e02172

24. Rohr, J. R., Barrett, C. B., Civitello, D. J., Craft, M. E., Delius, B., DeLeo, G. A. et al. (2019). Emerging human infectious diseases and the links to global food production. Nature Sustainability, 2(6), 445–456. https://doi.org/10.1038/s41893-019-0293-3

25. Alagawany, M., Elnesr, S. S., Farag, M. R., Tiwari, R., Yatoo, Mohd. I., Karthik, K. et al. (2021). Nutritional significance of amino acids, vitamins and minerals as nutraceuticals in poultry production and health — a comprehensive review. Veterinary Quarterly, 41(1), 1–29. https://doi.org/10.1080/01652176.2020.1857887

26. Kim, S. W., Gormley, A., Jang, K. B., Duarte, M. E. (2024). Invited Review — Current status of global pig production: An overview and research trends. Animal Bioscience, 37(4), 719– 729. https://doi.org/10.5713/ab.23.0367

27. Fouad, A. M., El-Senousey, H. K. (2014). Nutritional factors affecting abdominal fat deposition in poultry: A review. Asian-Australasian Journal of Animal Sciences, 27(7), 1057– 1068. https://doi.org/10.5713/ajas.2013.13702

28. Perna, M., Hewlings, S. (2022). Saturated fatty acid chain length and risk of cardiovascular disease: A systematic review. Nutrients, 15(1), 30. https://doi.org/10.3390/nu15010030

29. Chen, X., Ran, J., Mazhar, M., Zhu, Y., Lin, Y., Qin, L. et al. (2023). The balanced unsaturated fatty acid supplement constituted by woody edible oils improved lipid metabolism and gut microbiota in high-fat diet mice. Frontiers in Nutrition, 10, Article 1203932. https://doi.org/10.3389/fnut.2023.1203932

30. Ashraf, S. A., Adnan, M., Patel, M., Siddiqui, A. J., Sachidanandan, M., Snoussi, M. et al. (2020). Fish-based bioactives as potent nutraceuticals: Exploring the therapeutic perspective of sustainable food from the sea. Marine Drugs, 18(5), Article 265. https://doi.org/10.3390/md18050265

31. Olusi, T. A., Babatunde, O. S., Adeniji, M. (2021). Survey of the African giant land snail (Archachatina marginata), intermediate host of intestinal parasites in Akure Metropolis, Ondo State. Bulletin of the National Research Centre, 45(1), Article 183. https://doi.org/10.1186/s42269-021-00647-2

32. Lukong, C. B., Chidolue Ezebuo, F., Verla, A. W. (2012). Characterization of the major essential elements in the haemolymph of the giant african land snail (Achatina achatina) during aestivation. Biosciences Biotechnology Research Asia, 9(2), 577–584. https://doi.org/10.13005/bbra/1035

33. Lewbart, G. A., Zachariah, T. T. (2023). Aquatic and terrestrial invertebrate welfare. Animals, 13(21), Article 3375. https://doi.org/10.3390/ani13213375

34. Nontasan, S., Nammatra, R., Wangkahart, E. (2023). Nutritional profile of the land snail Cyclophorus saturnus, a richin-nutrients food item from Thailand. Heliyon, 9(6), Article e17020. https://doi.org/10.1016/j.heliyon.2023.e17020

35. Wu, P.-Y., Yang, S.-H., Wong, T.-C., Chen, T.-W., Chen, H.- H., Chen, T.-H. et al. (2015). Association of Processed Meat Intake with Hypertension Risk in Hemodialysis Patients: A Cross-Sectional Study. PLoS ONE, 10(10), Article e0141917. https://doi.org/10.1371/journal.pone.0141917

36. Moniruzzaman, M., Sku, S., Chowdhury, P., Tanu, M. B., Yeasmine, S., Hossen, Md. N. et al. (2021). Nutritional evaluation of some economically important marine and freshwater mollusc species of Bangladesh. Heliyon, 7(5), Article e07088. https://doi.org/10.1016/j.heliyon.2021.e07088

37. Ruiz, L. M., Libedinsky, A., Elorza, A. A. (2021). Role of copper on mitochondrial function and metabolism. Frontiers in Molecular Biosciences, 8, Article 711227. https://doi.org/10.3389/fmolb.2021.711227

38. Horwitz, W., George W. Latimer, G.W. (2005). Official Methods of Analysis of AOAC INTERNATIONAL. AOAC INTERNATIONAL, Gaithersburg, MD, USA, 2005.

39. Ali, Z., Khan, I., Iqbal, M. S., Zhang, Q., Ai, X., Shi, H. et al. (2023). Toxicological effects of copper on bioaccumulation and mRNA expression of antioxidant, immune, and apoptosis-related genes in Chinese striped-necked turtle (Mauremys sinensis). Frontiers in Physiology, 14, Article 1296259. https://doi.org/10.3389/fphys.2023.1296259

40. Adelantado, J. V. G., Martinez, V. P., Garcia, A. P., Reig, F. B. (1991). Atomic-absorption spectrometric determination of calcium, magnesium and potassium in leaf samples after decomposition with molten sodium hydroxide. Talanta, 38(9), 959–963. https://doi.org/10.1016/0039-9140(91)80309-N

41. Aparicio, E., Martín-Grau, C., Hernández-Martinez, C., Voltas, N., Canals, J., Arija, V. (2021). Changes in fatty acid levels (saturated, monounsaturated and polyunsaturated) during pregnancy. BMC Pregnancy and Childbirth, 21(1), Article 778. https://doi.org/10.1186/s12884-021-04251-0

42. Potărniche, I.-A., Saroși, C., Terebeș, R. M., Szolga, L., Gălătuș, R. (2023). Classification of food additives using uv spectroscopy and one-dimensional convolutional neural network. Sensors, 23(17), Article 7517. https://doi.org/10.3390/s23177517

43. Keklik, N. M., Bozkurt, H., Tekin, A. R. (2018). Effect of different cooking procedures on cholesterol and fat contents of selected meat products. Food Science and Technology, 38(4), 683–690. https://doi.org/10.1590/fst.13117

44. Sonklin, C., Laohakunjit, N., Kerdchoechuen, O. (2018). Assessment of antioxidant properties of membrane ultrafiltration peptides from mungbean meal protein hydrolysates. PeerJ, 6, Article e5337. https://doi.org/10.7717/peerj.5337

45. Baliyan, S., Mukherjee, R., Priyadarshini, A., Vibhuti, A., Gupta, A., Pandey, R. P. et al. (2022). Determination of antioxidants by DPPH radical scavenging activity and quantitative phytochemical analysis of ficus religiosa. Molecules, 27(4), Article 1326. https://doi.org/10.3390/molecules27041326

46. Ijarotimi, O. S., Adesanya, I. H., Oluwajuyitan, T. D. (2021). Nutritional, antioxidant, angiotensin-converting-enzyme and carbohydrate-hydrolyzing-enzyme inhibitory activities of underutilized leafy vegetable: African wild lettuce (Lactuca taraxacifolia Willd). Clinical Phytoscience, 7(1), Article 47. https://doi.org/10.1186/s40816-021-00282-4

47. González-Palma, I., Escalona-Buendía, H. B., Ponce-Alquicira, E., Téllez-Téllez, M., Gupta, V. K., Díaz-Godínez, G. et al. (2016). Evaluation of the antioxidant activity of aqueous and methanol extracts of Pleurotus ostreatus in different growth stages. Frontiers in Microbiology, 7, Article 01099. https://doi.org/10.3389/fmicb.2016.01099

48. Sudan, R., Bhagat, M., Gupta, S., Singh, J., Koul, A. (2014). Iron (FeII) chelation, ferric reducing antioxidant power, and immune modulating potential of Arisaema jacquemontii (Himalayan Cobra Lily). BioMed Research International, 2014, Article 179865. https://doi.org/10.1155/2014/179865

49. Bibi Sadeer, N., Montesano, D., Albrizio, S., Zengin, G., Mahomoodally, M. F. (2020). The versatility of antioxidant assays in food science and safety — chemistry, applications, strengths, and limitations. Antioxidants, 9(8), Article 709. https://doi.org/10.3390/antiox9080709

50. Molole, G. J., Gure, A., Abdissa, N. (2022). Determination of total phenolic content and antioxidant activity of Commiphora mollis (Oliv.) Engl. resin. BMC Chemistry, 16(1), Article 48. https://doi.org/10.1186/s13065-022-00841-x

51. Mediani, A., Hamezah, H. S., Jam, F. A., Mahadi, N. F., Chan, S. X. Y., Rohani, E. R. et al. (2022). A comprehensive review of drying meat products and the associated effects and changes. Frontiers in Nutrition, 9, Article 1057366. https://doi.org/10.3389/fnut.2022.1057366

52. Jolaosho, T. L., Elegbede, I. O., Akintola, S. L., Jimoh, A. A.- A. (2023). Biometric and gonadosomatic indices and chemical constituents of edible tissues and exoskeletons of Callinectes amnicola and their potential for reuse in the circular economy paradigm. Scientific Reports, 13(1), Article 8502. https://doi.org/10.1038/s41598-023-35732-1

53. Ismail, B. P. (2017). Ash Content Determination. Chapter in a book: Food Analysis Laboratory Manual. Springer International Publishing, 2017. https://doi.org/10.1007/978-3-319-44127-6_11

54. Vicente, F., Pereira, P. C. (2024). Pork meat composition and health: A review of the evidence. Foods, 13(12), Article 1905. https://doi.org/10.3390/foods13121905

55. Aouji, M., Imtara, H., Rkhaila, A., Bouhaddioui, B., Alahdab, A., Parvez, M. et al. (2023). Nutritional composition, fatty acids profile, mineral content, antioxidant activity and acute toxicity of the flesh of Helix aspersa Müller. Molecules, 28(17), Article 6323. https://doi.org/10.3390/molecules28176323

56. Mishra, B. P., Mishra, J., Paital, B., Rath, P. K., Jena, M. K., Reddy, B. V. V. et al. (2023). Properties and physiological effects of dietary fiber-enriched meat products: A review. Frontiers in Nutrition, 10. Article 1275341. https://doi.org/10.3389/fnut.2023.1275341

57. Barber, T. M., Kabisch, S., Pfeiffer, A. F. H., Weickert, M. O. (2020). The health benefits of dietary fibre. Nutrients, 12(10), Article 3209. https://doi.org/10.3390/nu12103209

58. Verbrugghe, A., Hesta, M. (2017). Cats and carbohydrates: The carnivore fantasy? Veterinary Sciences, 4(4), Article 55. https://doi.org/10.3390/vetsci4040055

59. Zheng, L., Wang, Z., Zhang, B., Yan, L., Wang, P., Zhao, C. et al. (2023). Effects of high dietary carbohydrate levels on growth performance, enzyme activities, expression of genes related to liver glucose metabolism, and the intestinal microbiota of Lateolabrax maculatus juveniles. Fishes, 8(9), Article 431. https://doi.org/10.3390/fishes8090431

60. Clemente-Suárez, V. J., Beltrán-Velasco, A. I., RedondoFlórez, L., Martín-Rodríguez, A., Tornero-Aguilera, J. F. (2023). Global impacts of western diet and its effects on metabolism and health: A narrative review. Nutrients, 15(12), Article 2749. https://doi.org/10.3390/nu15122749

61. Jia, X., Liu, J., Chen, B., Jin, D., Fu, Z., Liu, H. et al. (2018). Differences in nutrient and energy contents of commonly consumed dishes prepared in restaurants v. at home in Hunan Province, China. Public Health Nutrition, 21(7), 1307– 1318. https://doi.org/10.1017/S1368980017003779

62. Norman, K., Haß, U., Pirlich, M. (2021). Malnutrition in older adults — recent advances and remaining challenges. Nutrients, 13(8), Article 2764. https://doi.org/10.3390/nu13082764

63. Kaur, D., Rasane, P., Singh, J., Kaur, S., Kumar, V., Mahato, D. K. et al. (2019). Nutritional interventions for elderly and considerations for the development of geriatric foods. Current Aging Science, 12(1), 15–27. https://doi.org/10.2174/1874609812666190521110548

64. Melse-Boonstra, A. (2020). Bioavailability of micronutrients from nutrient-dense whole foods: Zooming in on dairy, vegetables, and fruits. Frontiers in Nutrition, 7, Article 00101. https://doi.org/10.3389/fnut.2020.00101

65. Fagbuaro, O., Oso, J. A., Edward, J. B., Ogunleye, R. F. (2006). Nutritional status of four species of giant land snails in Nigeria. Journal of Zhejiang University SCIENCE B, 7(9), 686–689. https://doi.org/10.1631/jzus.2006.B0686

66. Jomova, K., Makova, M., Alomar, S. Y., Alwasel, S. H., Nepovimova, E., Kuca, K. et al. (2022). Essential metals in health and disease. Chemico-Biological Interactions, 367, Article 110173. https://doi.org/10.1016/j.cbi.2022.110173

67. Pittas, A. G., Lau, J., Hu, F. B., Dawson-Hughes, B. (2007). The role of vitamin D and Calcium in Type 2 diabetes. A systematic review and meta-analysis. The Journal of Clinical Endocrinology and Metabolism, 92(6), 2017–2029. https://doi.org/10.1210/jc.2007-0298

68. Udensi, U., Tchounwou, P. (2017). Potassium homeostasis, oxidative stress, and human disease. International Journal of Clinical and Experimental Physiology, 4(3), 111–122. https://doi.org/10.4103/ijcep.ijcep_43_17

69. Dubey, P., Thakur, V., Chattopadhyay, M. (2020). Role of minerals and trace elements in diabetes and insulin resistance. Nutrients, 12(6), Article 1864. https://doi.org/10.3390/nu12061864

70. Alengebawy, A., Abdelkhalek, S. T., Qureshi, S. R., Wang, M.-Q. (2021). Heavy metals and pesticides toxicity in agricultural soil and plants: Ecological risks and human health implications. Toxics, 9(3), Article 42. https://doi.org/10.3390/toxics9030042

71. Scutarașu, E. C., Trincă, L. C. (2023). Heavy metals in foods and beverages: Global situation, health risks and reduction methods. Foods, 12(18), Article 3340. https://doi.org/10.3390/foods12183340

72. Aly, M. O., Ghobashy, S. M., Aborhyem, S. M. (2023). Authentication of protein, fat, carbohydrates, and total energy in commercialized high protein sports foods with their labeling data. Scientific Reports, 13(1), Article 15359. https://doi.org/10.1038/s41598-023-42084-3

73. Alturiqi, A. S., Albedair, L. A. (2012). Evaluation of some heavy metals in certain fish, meat and meat products in Saudi Arabian markets. Egyptian Journal of Aquatic Research, 38(1), 45–49. https://doi.org/10.1016/j.ejar.2012.08.003

74. Drozd, Ł., Ziomek, M., Szkucik, K., Paszkiewicz, W., Maćkowiak-Dryka, M., Bełkot, Z. et al. (2017). Selenium, copper, and zinc concentrations in the raw and processed meat of edible land snails harvested in Poland. Journal of Veterinary Research, 61(3), 293–298. https://doi.org/10.1515/jvetres-2017-0039

75. Rygało-Galewska, A., Zglińska, K., Roguski, M., Roman, K., Bendowski, W., Bień, D. et al. (2023). Effect of different levels of calcium and addition of magnesium in the diet on garden snails’ (Cornu aspersum) condition, production, and nutritional parameters. Agriculture, 13(11), Article 2055. https://doi.org/10.3390/agriculture13112055

76. Younes, S. (2024). The role of micronutrients on the treatment of diabetes. Human Nutrition and Metabolism, 35, Article 200238. https://doi.org/10.1016/j.hnm.2023.200238

77. Agedew, E., Tsegaye, B., Bante, A., Zerihun, E., Aklilu, A., Girma, M. et al. (2022). Zinc deficiency and associated factors among pregnant women’s attending antenatal clinics in public health facilities of Konso Zone, Southern Ethiopia. PLoS ONE, 17(7), Article e0270971. https://doi.org/10.1371/journal.pone.0270971

78. Lin, P.-H., Sermersheim, M., Li, H., Lee, P. H. U., Steinberg, S. M., Ma, J. (2017). Zinc in wound healing modulation. Nutrients, 10(1), Article 16. https://doi.org/10.3390/nu10010016

79. Gill, D., Monori, G., Tzoulaki, I., Dehghan, A. (2018). Iron status and risk of stroke. Stroke, 49(12), 2815–2821. https://doi.org/10.1161/STROKEAHA.118.022701

80. Zhang, W., Iso, H., Ohira, T., Date, C., Tanabe, N., Kikuchi, S. et al. (2012). Associations of dietary iron intake with mortality from cardiovascular disease: The JACC study. Journal of Epidemiology, 22(6), 484–493. https://doi.org/10.2188/jea.JE20120006

81. Gutiérrez, O. M., Porter, A. K., Viggeswarapu, M., Roberts, J. L., Beck, G. R. (2020). Effects of phosphorus and calcium to phosphorus consumption ratio on mineral metabolism and cardiometabolic health. The Journal of Nutritional Biochemistry, 80, Article 108374. https://doi.org/10.1016/j.jnutbio.2020.108374

82. National Research Council (1989). Recommended dietary allowance. Washington, DC: National Academy Press, 1989.

83. Varela-López, A., Bullón, P., Ramírez-Tortosa, C. L., Navarro-Hortal, M. D., Robles-Almazán, M., Bullón, B. et al. (2020). A diet rich in saturated fat and cholesterol aggravates the effect of bacterial lipopolysaccharide on alveolar bone loss in a rabbit model of periodontal disease. Nutrients, 12(5), Article 1405. https://doi.org/10.3390/nu12051405

84. Clemente-Suárez, V. J., Mielgo-Ayuso, J., Martín-Rodríguez, A., Ramos-Campo, D. J., Redondo-Flórez, L., Tornero-Aguilera, J. F. (2022). The burden of carbohydrates in health and disease. Nutrients, 14(18), Article 3809. https://doi.org/10.3390/nu14183809

85. Azemi, N. A., Azemi, A. K., Abu-Bakar, L., Sevakumaran, V., Muhammad, T. S. T., Ismail, N. (2022). Effect of linoleic acid on cholesterol levels in a high-fat diet-induced hypercholesterolemia rat model. Metabolites, 13(1), Article 53. https://doi.org/10.3390/metabo13010053

86. Astrup, A., Magkos, F., Bier, D. M., Brenna, J. T., de Oliveira Otto, M. C., Hill, J. O. et al. (2020). Saturated fats and health: A reassessment and proposal for food-based recommendations. Journal of the American College of Cardiology, 76(7), 844–857. https://doi.org/10.1016/j.jacc.2020.05.077

87. Voon, P. T., Ng, T. K. W., Lee, V. K. M., Nesaretnam, K. (2011). Diets high in palmitic acid (16:0), lauric and myristic acids (12:0 + 14:0), or oleic acid (18:1) do not alter postprandial or fasting plasma homocysteine and inflammatory markers in healthy Malaysian adults. The American Journal of Clinical Nutrition, 94(6), 1451–1457. https://doi.org/10.3945/ajcn.111.020107

88. DiNicolantonio, J. J., O’Keefe, J. H. (2018). Effects of dietary fats on blood lipids: A review of direct comparison trials. Open Heart, 5(2), Article e000871. https://doi.org/10.1136/openhrt-2018-000871

89. World Health Organization. (2008). The joint FAO/WHO expert consultation on fats and fatty acids in human nutrition: Interim summary of conclusions and dietary recommendations on total fat and fatty acids. Retrieved from https://www.foodpolitics.com/wp-content/uploads/FFA_summary_rec_conclusion.pdf Accessed June 21, 2024

90. Vissers, L. E. T., Rijksen, J., Boer, J. M. A., Verschuren, W. M. M., van der Schouw, Y. T., Sluijs, I. (2019). Fatty acids from dairy and meat and their association with risk of coronary heart disease. European Journal of Nutrition, 58(7), 2639– 2647. https://doi.org/10.1007/s00394-018-1811-1

91. Jenkins, D. J. A., Chiavaroli, L., Wong, J. M. W., Kendall, C., Lewis, G. F., Vidgen, E. et al. (2010). Adding monounsaturated fatty acids to a dietary portfolio of cholesterol-lowering foods in hypercholesterolemia. Canadian Medical Association Journal, 182(18), 1961–1967. https://doi.org/10.1503/cmaj.092128

92. D’Angelo, S., Motti, M. L., Meccariello, R. (2020). ω-3 and ω-6 polyunsaturated fatty acids, obesity and cancer. Nutrients, 12(9), Article 2751. https://doi.org/10.3390/nu12092751

93. Calder, P. C. (2013). Omega‐3 polyunsaturated fatty acids and inflammatory processes: nutrition or pharmacology? British Journal of Clinical Pharmacology, 75(3), 645–662. https://doi.org/10.1111/j.1365-2125.2012.04374.x

94. Mozos, I., Stoian, D., Luca, C. T. (2017). Crosstalk between vitamins A, B12, D, K, C, and E status and arterial stiffness. Disease Markers, 2017, Article 8784971. https://doi.org/10.1155/2017/8784971

95. Hrubša, M., Siatka, T., Nejmanová, I., Vopršalová, M., Kujovská Krčmová, L., Matoušová, K. et al. (2022). Biological properties of vitamins of the B-complex, part 1: Vitamins B1, B2, B3, and B5. Nutrients, 14(3), Article 484. https://doi.org/10.3390/nu14030484

96. Cornell, L., Arita, K., Goodrich, R. (2020). Fat-Soluble Vitamins: A, E, and K. Chapter in a book: Geriatric Gastroenterology. Springer International Publishing, 2020. https://doi.org/10.1007/978-3-319-90761-1_22-1

97. Sahay, M., Sahay, R. (2012). Rickets-vitamin D deficiency and dependency. Indian Journal of Endocrinology and Metabolism, 16(2), 164–176. https://doi.org/10.4103/2230-8210.93732

98. Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., Lorenzo, J. M. (2019). A Comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), Article 429. https://doi.org/10.3390/antiox8100429

99. Kralik, G., Kralik, Z., Grčević, M., Hanžek, D. (2018). Quality of Chicken Meat. Chapter in a book: Animal Husbandry and Nutrition. InTech, 2018. https://doi.org/10.5772/intechopen.72865

100. Vincenti, F., Giusti, A. M., Danieli, P. P., Ronchi, B., Perer, F., Macone, A. et al. (2016). Influence of dietary vitamin E supplementation on cholesterol oxidation and fresh colour in beef aged for 3 and 14 days. Italian Journal of Animal Science, 15(3), 351–357. https://doi.org/10.1080/1828051X.2016.1188331

101. Niu, Z. Y., Min, Y. N., Liu, F. Z. (2018). Dietary vitamin E improves meat quality and antioxidant capacity in broilers by upregulating the expression of antioxidant enzyme genes. Journal of Applied Animal Research, 46(1), 397–401. https://doi.org/10.1080/09712119.2017.1309321

102. Szewczyk, K., Chojnacka, A., Górnicka, M. (2021). Tocopherols and tocotrienols — bioactive dietary compounds; What Is certain, what is doubt? International Journal of Molecular Sciences, 22(12), Article 6222. https://doi.org/10.3390/ijms22126222

103. Rifler, J.-P. (2018). Is a meal without wine good for health? Diseases, 6(4), Article 105. https://doi.org/10.3390/diseases6040105

104. Pérez-Gálvez, A., Viera, I., Roca, M. (2020). Carotenoids and chlorophylls as antioxidants. Antioxidants, 9(6), Article 505. https://doi.org/10.3390/antiox9060505

105. Stępień, A., Koziarska-Rościszewska, M., Rysz, J., Stępień, M. (2022). Biological role of vitamin K — with particular emphasis on cardiovascular and renal aspects. Nutrients, 14(2), Article 262. https://doi.org/10.3390/nu14020262

106. Yang, A., Mottillo, E. P. (2020). Adipocyte lipolysis: From molecular mechanisms of regulation to disease and therapeutics. Biochemical Journal, 477(5), 985–1008. https://doi.org/10.1042/BCJ20190468

107. Soliman, G. (2018). Dietary Cholesterol and the lack of evidence in cardiovascular disease. Nutrients, 10(6), Article 780. https://doi.org/10.3390/nu10060780

108. Connolly, G., Campbell, W. W. (2023). Poultry consumption and human cardiometabolic health-related outcomes: A narrative review. Nutrients, 15(16), Article 3550. https://doi.org/10.3390/nu15163550

109. Kaluza, J., Wolk, A., Larsson, S. C. (2012). Red meat consumption and risk of stroke. Stroke, 43(10), 2556–2560. https://doi.org/10.1161/STROKEAHA.112.663286

110. Yang, C., Pan, L., Sun, C., Xi, Y., Wang, L., Li, D. (2016). Red meat consumption and the risk of stroke: a dose — response meta-analysis of prospective cohort studies. Journal of Stroke and Cerebrovascular Diseases, 25(5), 1177–1186. https://doi.org/10.1016/j.jstrokecerebrovasdis.2016.01.040

111. Siri-Tarino, P. W., Sun, Q., Hu, F. B., Krauss, R. M. (2010). Saturated fatty acids and risk of coronary heart disease: Modulation by replacement nutrients. Current Atherosclerosis Reports, 12(6), 384–390. https://doi.org/10.1007/s11883-010-0131-6

112. Tan, B. L., Norhaizan, M. E. (2019). Effect of high-fat diets on oxidative stress, cellular inflammatory response and cognitive function. Nutrients, 11(11), Article 2579. https://doi.org/10.3390/nu11112579

113. Liang, H., Jiang, F., Cheng, R., Luo, Y., Wang, J., Luo, Z. et al. (2021). A high-fat diet and high-fat and high-cholesterol diet may affect glucose and lipid metabolism differentially through gut microbiota in mice. Experimental Animals, 70(1), 73–83. https://doi.org/10.1538/expanim.20-0094

114. Luna-Castillo, K. P., Olivares-Ochoa, X. C., HernándezRuiz, R. G., Llamas-Covarrubias, I. M., Rodríguez-Reyes, S. C., Betancourt-Núñez, A. et al. (2022). The effect of dietary interventions on hypertriglyceridemia: From public health to molecular nutrition evidence. Nutrients, 14(5), Article 1104. https://doi.org/10.3390/nu14051104

115. Schoeneck, M., Iggman, D. (2021). The effects of foods on LDL cholesterol levels: A systematic review of the accumulated evidence from systematic reviews and meta-analyses of randomized controlled trials. Nutrition, Metabolism and Cardiovascular Diseases, 31(5), 1325–1338. https://doi.org/10.1016/j.numecd.2020.12.032

116. Andrés, C. M. C., Pérez de la Lastra, J. M., Juan, C. A., Plou, F. J., Pérez-Lebeña, E. (2023). Polyphenols as antioxidant/pro-oxidant compounds and donors of reducing species: Relationship with human antioxidant metabolism. Processes, 11(9), Article 2771. https://doi.org/10.3390/pr11092771

117. Meulmeester, F. L., Luo, J., Martens, L. G., Mills, K., van Heemst, D., Noordam, R. (2022). Antioxidant supplementation in oxidative stress-related diseases: What have we learned from studies on Alpha-Tocopherol? Antioxidants, 11(12), Article 2322. https://doi.org/10.3390/antiox11122322

118. Gulcin, İ., Alwasel, S. H. (2022). Metal ions, metal chelators and metal chelating assay as antioxidant method. Processes, 10(1), Article 132. https://doi.org/10.3390/pr10010132

119. Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N. et al. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine, 184, 114–134. https://doi.org/10.1016/j.freeradbiomed.2022.03.019

120. Shahidi, F., Zhong, Y. (2015). Measurement of antioxidant activity. Journal of Functional Foods, 18(Part B), 757–781. https://doi.org/10.1016/j.jff.2015.01.047

121. Sharma, R., Sehrawat, R., Ahlawat, S., Sharma, V., Thakur, M. S., Mishra, A. K. et al. (2023). Functional quality characteristics of the meat from a dual-purpose poultry crossbreed suitable for backyard rearing in comparison to commercial broilers. Foods, 12(13), Article 2434. https://doi.org/10.3390/foods12132434

122. Martemucci, G., Costagliola, C., Mariano, M., D’andrea, L., Napolitano, P., D’Alessandro, A. G. (2022). Free radical properties, source and targets, antioxidant consumption and health. Oxygen, 2(2), 48–78. https://doi.org/10.3390/oxygen2020006

123. Christodoulou, M. C., Orellana Palacios, J. C., Hesami, G., Jafarzadeh, S., Lorenzo, J. M., Domínguez, R. et al. (2022). Spectrophotometric methods for measurement of antioxidant activity in food and pharmaceuticals. Antioxidants, 11(11), Article 2213. https://doi.org/10.3390/antiox11112213

124. Aryal, S., Baniya, M. K., Danekhu, K., Kunwar, P., Gurung, R., Koirala, N. (2019). Total phenolic content, flavonoid content and antioxidant potential of wild vegetables from Western Nepal. Plants, 8(4), Article 96. https://doi.org/10.3390/plants8040096


Рецензия

Для цитирования:


 ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,  ,   . Теория и практика переработки мяса. 2024;9(4):343-359. https://doi.org/10.21323/2414-438X-2024-9-4-343-359

For citation:


Owheruo J.O., Edo G.I., Akpoghelie P.O., Faturoti A.O., Isoje E.F., Igbuku U.A., Oghroro E.E., Ahmed D.S., Yousif E., Zainulabdeen Kh., Mohammed A.A., Essaghah A.E., Umar H. Nutritional assessment and antioxidant potential of selected meat types consumed in Owhelogbo, Delta State, Nigeria. Theory and practice of meat processing. 2024;9(4):343-359. (In Russ.) https://doi.org/10.21323/2414-438X-2024-9-4-343-359

Просмотров: 926


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)