A review of the irradiation effect on the quality and safety of different types of meat
https://doi.org/10.21323/2414-438X-2024-9-4-314-322
Abstract
This review explores the benefits of irradiation in improving the quality and safety of different meat types. The process involves exposing meat in a shielded room using one source of radiation that can be gamma radiation, electron beam or X-radiation for a specified period of time. Through the use of this technology, parasites, viruses, insects and bacteria can be effectively reduced, which in turn increases the lifespan and quality of meat products. According to products to be irradiated and the bacteria to be eradicated, the radiation dose could be high, low or medium. Irradiating meat at an appropriate dose does not affect its sensory qualities such as taste, texture and color. The impact of irradiation on nutritional and chemical aspects of different types of meat is complex, since free radicals can cause lipid oxidation and alter vitamins, fatty acids, and amino acids. Furthermore, irradiation can also affect physical properties of meat, such as texture and tenderness. This review also summarizes the available information on the impact of irradiation on the extension of meat shelf life.
About the Authors
H. M. QadrIraq
Hiwa Mohammad Qadr, PhD Student, Researcher, Assistance Professor, Department of Physics, College of Science
Sulaymaniyah Governorate, Kurdistan Region
N. F. Salih
Iraq
Najeba Farhad Salih, PhD Researcher, Assistance Professor, Department of Physics, Faculty of Science and Health
Erbil Governorate, Kurdistan Region
References
1. Klurfeld, D. M. (2018). What is the role of meat in a healthy diet? Animal Frontiers, 8(3), 5–10. https://doi.org/10.1093/af/vfy009
2. Pellissery, A. J., Vinayamohan, P. G., Amalaradjou, M. A. R., Venkitanarayanan, K. (2020). Spoilage bacteria and meat quality. Chapter in a book: Meat Quality Analysis Advanced Evaluation Methods, Techniques, and Technologies. Academic Press, 2020. https://doi.org/10.1016/b978-0-12-819233-7.00017-3
3. Liaqat, A., Ahsan, S., Iqbal, R., Chughtai, M.F.J., Khaliq, A. (2023). Pathogenic microbes in the food systems. Chapter in a book: Food Microbial and Molecular Biology. Apple Academic Press, 2023.
4. World Health Organization (2015). WHO estimates of the global burden of foodborne diseases: Foodborne disease burden epidemiology reference group 2007–2015. World Health Organization 2015.
5. World Health Organization (2024). Food safety. Retrieved from: https://www.who.int/news-room/fact-sheets/detail/foodsafety Accessed November 09, 2024.
6. Liberty, J.T., Dickson, D.I., Achebe, A.E., Salihu, M.B. (2013). An overview of the principles and effects of irradiation on food processing and preservation. International Journal of Multidisciplinary and Current Research, 1, 236–243.
7. Shah, M. A., Mir, S. A., Pala, S. A. (2014). Enhancing food safety and stability through irradiation: A review. Journal of Microbiology, Biotechnology and Food Sciences, 3(5), 371–378.
8. Zhong, Y., Dong, S., Cui, Y., Dong, X., Xu, H., Li, M. (2022). Recent advances in postharvest irradiation preservation technology of edible fungi: A review. Foods, 12(1), Article 103. https://doi.org/10.3390/foods12010103
9. Munir, M. T., Federighi, M. (2020). Control of foodborne biological hazards by ionizing radiations. Foods, 9(7), Article 878. https://doi.org/10.3390/foods9070878
10. Food and Drug Administration, HHS (2008). Irradiation in the production, processing and handling of food. Final rule. Federal Register, 73(164), 49593–49603.
11. Mostafavi, H. A., Fathollahi, H., Motamedi, F., Mirmajlessi, S. M. (2010). Food irradiation: Applications, public acceptance and global trade. African Journal of Biotechnology, 9(20), 2826–2833.
12. Singh, R., Singh, A. (2019). Food irradiation an established food processing technology for food safety and security. Defence Life Science Journal, 4(4), 206–213. https://doi.org/10.14429/dlsj.4.14397
13. Pi, X., Yang, Y., Sun, Y., Wang, X., Wan, Y., Fu, G. et al. (2021). Food irradiation: a promising technology to produce hypoallergenic food with high quality. Critical Reviews in Food Science and Nutrition, 62(24), 6698–6713. https://doi.org/10.1080/10408398.2021.1904822
14. Jouki, M. (2012). Effects of gamma irradiation and storage time on ostrich meat tenderness. Scientific Journal of Animal Science. 1, 137–141.
15. Rodrigues, L. M., Sales, L. A., Fontes, P. R., Torres Filho, R. de A., Andrade, M. P. D., Ramos, A. de L. S. et al. (2020). Combined effects of gamma irradiation and aging on tenderness and quality of beef from Nellore cattle. Food Chemistry, 313, Article 126137. https://doi.org/10.1016/j.foodchem.2019.126137
16. Hashem, M. A., Hossain, M. A., Sadakuzzaman, M., Khan, M., Rahman, M. M., Islam, M. A. (2022). Effect of gamma irradiation on the shelf life and quality of mutton. Turkish Journal of Agriculture — Food Science and Technology, 10(2), 117– 124. https://doi.org/10.24925/turjaf.v10i2.117-124.4126
17. Maraei, R. W., Elsawy, K. M. (2017). Chemical quality and nutrient composition of strawberry fruits treated by γ-irradiation. Journal of Radiation Research and Applied Sciences, 10(1), 80–87. https://doi.org/10.1016/j.jrras.2016.12.004
18. Asmarani, R.R., Ujilestari, T., Sholikin, M.M., Wulandari, W., Damayanti, E., Anwar, M. et al. (2024). Meta-analysis of the effects of gamma irradiation on chicken meat and meat product quality. Veterinary World. 17(5), 1084–1097. https://doi.org/10.14202/vetworld.2024.1084-1097
19. Gao, W., Li, X., Wan, J., Yan, H. (2024). Influence of X-ray irradiation on quality and core microbiological characteristics of chilled chicken meat. LWT, 206, Article 116582. https://doi.org/10.1016/j.lwt.2024.116582
20. Kim, H.-J., Alahakoon, A. U., Jayasena, D. D., Khan, M. I., Nam, K. C., Jo, C. et al. (2015). Effects of Electron beam irradiation and high-pressure treatment with citrus peel extract on the microbiological, chemical and sensory qualities of marinated chicken breast meat. Korean Journal of Poultry Science, 42(3), 215–221. https://doi.org/10.5536/KJPS.2015.42.3.215
21. Qadr, H. M. (2022). Investigation of gamma ray buildup factor for some shielding absorber. Cumhuriyet Science Journal, 43(3), 520–525. https://doi.org/10.17776/csj.1098571
22. Marturano, F., Ciparisse, J.-F., Chierici, A., d’Errico, F., Di Giovanni, D., Fumian, F. et al. (2020). Enhancing radiation detection by drones through numerical fluid dynamics simulations. Sensors, 20(6), Article 1770. https://doi.org/10.3390/s20061770
23. Bisht, B., Bhatnagar, P., Gururani, P., Kumar, V., Tomar, M. S., Sinhmar, R. et al. (2021). Food irradiation: Effect of ionizing and non-ionizing radiations on preservation of fruits and vegetables– a review. Trends in Food Science and Technology, 114, 372–385. https://doi.org/10.1016/j.tifs.2021.06.002
24. Tahergorabi, R., Matak, K. E., Jaczynski, J. (2012). Application of electron beam to inactivate Salmonella in food: Recent developments. Food Research International, 45(2), 685– 694. https://doi.org/10.1016/j.foodres.2011.02.003
25. Danyo, E. K., Ivantsova, M., Selezneva, I. (2023). Ionizing radiation effects on microorganisms and its applications in the food industry. Foods and Raw Materials, 12(1), 1–12. https://doi.org/10.21603/2308-4057-2024-1-583
26. Grdanovska, S., Cooper, C. (2018). Electron beam driven industrial chemistries. Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States), 2018.
27. Praveen, C., Dancho, B. A., Kingsley, D. H., Calci, K. R., Meade, G. K., Mena, K. D. et al. (2013). Susceptibility of murine norovirus and hepatitis a virus to electron beam irradiation in oysters and quantifying the reduction in potential infection risks. Applied and Environmental Microbiology, 79(12), 3796–3801. https://doi.org/10.1128/aem.00347-13
28. Fellows, P.J. (2022). Food processing technology: Principles and practice. Woodhead publishing, 2022.
29. Duarte, B., Mamede, R., Carreiras, J., Duarte, I. A., Caçador, I., Reis-Santos, P. et al. (2022). Harnessing the full power of chemometric-based analysis of total reflection X-ray fluorescence spectral data to boost the identification of seafood provenance and fishing areas. Foods, 11(17), Article 2699. https://doi.org/10.3390/foods11172699
30. Zehi, Z. B., Afshari, A., Noori, S. M. A., Jannat, B., Hashemi, M. (2020). The effects of x-ray irradiation on safety and nutritional value of food: A systematic review article. Current Pharmaceutical Biotechnology, 21(10), 919–926. https://doi.org/10.2174/1389201021666200219093834
31. Singh, P.K., Verma, A.K., Ranjan, R., Singh, T.P., Kumar, D., Kumar, P. (2015). Non thermal preservation of meat by irradiation: A review. Journal of Food Research and Technology, 3(1), 7–13.
32. Indiarto, R., Irawan, A. N., Subroto, E. (2023). Meat irradiation: A comprehensive review of its impact on food quality and safety. Foods, 12(9), Article 1845. https://doi.org/10.3390/foods12091845
33. Mshelia, R. D., Dibal, N. I., Chiroma, S. M. (2022). Food irradiation: An effective but under-utilized technique for food preservations. Journal of Food Science and Technology, 60(10), 2517–2525. https://doi.org/10.1007/s13197-022-05564-4
34. Pedreschi, F., Mariotti-Celis, M. S. (2020). Irradiation kills microbes: Can it do anything harmful to the food? Chapter in a book: Genetically modified and irradiated food. Academic Press, 2020. https://doi.org/10.1016/b978-0-12-817240-7.00014-0
35. Ashraf, S., Sood, M., Bandral, J.D., Trilokia, M., Manzoor, M. (2019). Food irradiation: A review. International Journal of Chemical Studies, 7(2), 131–136.
36. Derakhshan, Z., Conti, G.O., Heydari, A., Hosseini, M.S., Mohajeri, F.A., Gheisari, H. et al. (2018). Survey on the effects of electron beam irradiation on chemical quality and sensory properties on quail meat. Food and Chemical Toxicology, 112, 416–420. https://doi.org/10.1016/j.fct.2017.12.015
37. Du, M., Hur, S.J., Ahn, D.U. (2002). Raw-meat packaging and storage affect the color and odor of irradiated broiler breast fillets after cooking. Meat Science, 61(1), 49–54. https://doi.org/10.1016/s0309-1740(01)00161-9
38. Merritt, C., Angelini, P., Wierbicki, E., Shults, G.W. (1975). Chemical changes associated with flavor in irradiated meat. Journal of Agricultural and Food Chemistry, 23(6), 1037–1041. https://doi.org/10.1021/jf60202a031
39. Huang, X., You, Y., Liu, Q., Dong, H., Bai, W., Lan, B. et al. (2023). Effect of gamma irradiation treatment on microstructure, water mobility, flavor, sensory and quality properties of smoked chicken breast. Food Chemistry, 421, Article 136174. https://doi.org/10.1016/j.foodchem.2023.136174
40. Arshad, M. S., Amjad, Z., Yasin, M., Saeed, F., Imran, A., Sohaib, M. et al. (2019). Quality and stability evaluation of chicken meat treated with gamma irradiation and turmeric powder. International Journal of Food Properties, 22(1), 154– 172. https://doi.org/10.1080/10942912.2019.1575395
41. Ahmed Al-Perkhdri, A. S. (May 28–30, 2022). Gamma rays impacts in qualitative traits of camel meat in different area — Iraq. IOP Conference Series: Earth and Environmental Science. Third International Scientific Conference of Agriculture, Environment and Sustainable Development (ISAESC2022) Al-Qadisiyyah, Iraq, 2022. https://doi.org/10.1088/1755-1315/1060/1/012059
42. Badr, H. M. (2004). Use of irradiation to control foodborne pathogens and extend the refrigerated market life of rabbit meat. Meat Science, 67(4), 541–548. https://doi.org/10.1016/j.meatsci.2003.11.018
43. Feng, X., Moon, S. H., Lee, H. Y., Ahn, D. U. (2017). Effect of irradiation on the parameters that influence quality characteristics of raw turkey breast meat. Radiation Physics and Chemistry, 130, 40–46. https://doi.org/10.1016/j.radphyschem.2016.07.015
44. Mohamed, H. M., Emara, M. M. T., Farag, M. D. H., Elnawawi, F. A. (2005). Effect of gamma irradiation on beef quality. Journal of Veterinary Medical Research, 15(2), 74–82. https://doi.org/10.21608/jvmr.2005.77935
45. Shehata, M.F. (2005). Carcass traits and meat quality of onehumped camelsfed [mfferenthalophytksforages: 2-physlcal, chemical. and sensory charactertstics of camel meat. Journal of Animal and Poultry Production, 30, 1943–1952. https://doi.org/10.21608/jappmu.2005.237971
46. Satin, M. (2002). Use of irradiation for microbial decontamination of meat: Situation and perspectives. Meat Science, 62(3), 277–283. https://doi.org/10.1016/s0309-1740(02)00129-8
47. Szelecsenyi, A., Meier, H., Spinner, K., Vonaesch, P.C., Zinsstag, J., Widmer, A. F. (2021). Emergence of antimicrobial resistance and interaction between humans, animals and environment. Chapter in a book: One Health: the theory and practice of integrated health approaches, CABI Wallingford UK, 2021.
48. Wahyono, T., Ujilestari, T., Sholikin, M. M., Muhlisin, M., Cahyadi, M., Volkandari, S. D. et al. (2024). Quality of pork after electron-beam irradiation: A meta-analysis study. Veterinary World, 17(1), 59–71. https://doi.org/10.14202/vetworld.2024.59-71
49. Ehlermann, D. A. E. (2016). Wholesomeness of irradiated food. Radiation Physics and Chemistry, 129, 24–29. https://doi.org/10.1016/j.radphyschem.2016.08.014
50. Arshad, M. S., Kwon, J., Ahmad, R. S., Ameer, K., Ahmad, S., Jo, Y. (2020). Influence of E‐beam irradiation on microbiological and physicochemical properties and fatty acid profile of frozen duck meat. Food Science and Nutrition, 8(2), 1020– 1029. Portico. https://doi.org/10.1002/fsn3.1386
51. Sedeh, F. M., Arbabi, K., Fatolahi, H., Abhari, M. (2007). Using gamma irradiation and low temperature on microbial decontamination of red meat in Iran. Indian Journal of Microbiology, 47(1), 72–76. https://doi.org/10.1007/s12088-007-0013-y
52. Park, J. G., Yoon, Y., Park, J. N., Han, I. J., Song, B. S., Kim, J. H. et al. (2010). Effects of gamma irradiation and electron beam irradiation on quality, sensory, and bacterial populations in beef sausage patties. Meat Science, 85(2), 368–372. https://doi.org/10.1016/j.meatsci.2010.01.014
53. Kiran, B. S. (2023). Shelf-life extension of wheat flour by irradiation technique. The Pharma Innovation, 12(7S), 727–735. https://doi.org/10.22271/tpi.2023.v12.i7si.21408
54. Nethra, P. V., Sunooj, K. V., Aaliya, B., Navaf, M., Akhila, P. P., Sudheesh, C. et al. (2023). Critical factors affecting the shelf life of packaged fresh red meat — A review. Measurement: Food, 10, Article 100086. https://doi.org/10.1016/j.meafoo.2023.100086
55. Rodrigues, I., Baldini, A., Pires, M., Carvalho Barros, J., Fregonesi, R., Gonçalves de Lima, C. et al. (2021). Gamma ray irradiation: A new strategy to increase the shelf life of salt-reduced hot dog wieners. LWT, 135, Article 110265. https://doi.org/10.1016/j.lwt.2020.110265
56. Shankar, S., Karboune, S., Salmieri, S., Lacroix, M. (2022). Development of antimicrobial formulation based on essential oils and gamma irradiation to increase the shelf life of boneless chicken thighs. Radiation Physics and Chemistry, 192, Article 109893. https://doi.org/10.1016/j.radphyschem.2021.109893
57. Otoo, E. A., Ocloo, F. C. K., Appiah, V. (2022). Effect of gamma irradiation on shelf life of smoked guinea fowl (Numida meleagris) meat stored at refrigeration temperature. Radiation Physics and Chemistry, 194, Article 110041. https://doi.org/10.1016/j.radphyschem.2022.110041
58. McCormick, K.E., Han, I.Y., Acton, J.C., Sheldon, B.W., Dawson, P.L. (2005). In-package pasteurization combined with biocide-impregnated films to inhibit Listeria monocytogenes and Salmonella Typhimurium in turkey bologna. Journal of Food Science, 70, 52–57.
59. Wang, S.H., Chang, M.H., Chen, T.C. (2004). Shelf-life and microbiological profiler of chicken wing products following sous vide treatment. International Journal of Poultry Science, 3(5), 326–332. https://doi.org/10.3923/ijps.2004.326.332
60. Rima, F., Sadakuzzaman, M., Hossain, M., Ali, M., Hashem, M. (2019). Effect of gamma irradiation on shelf life and quality of broiler meat. SAARC Journal of Agriculture, 17(1), 149– 159. https://doi.org/10.3329/sja.v17i1.42768
61. Damdam, A. N., Alzahrani, A., Salah, L., Salama, K. N. (2023). Effects of UV–C irradiation and vacuum sealing on the shelf-life of beef, chicken and salmon fillets. Foods, 12(3), Article 606. https://doi.org/10.3390/foods12030606
62. Gupta, R. K., Guha, P., Srivastav, P. P. (2023). Application of irradiation techniques for meat, fish, and poultry industries. Chapter in a book: Non-Thermal Processing Technologies for the Meat, Fish, and Poultry Industries, CRC Press, 2023. https://doi.org/10.1201/9781003251958-6
63. Domínguez, R., Pateiro, M., Gagaoua, M., Barba, F. J., Zhang, W., Lorenzo, J. M. (2019). A Comprehensive review on lipid oxidation in meat and meat products. Antioxidants, 8(10), Article 429. https://doi.org/10.3390/antiox8100429
64. Jia, W., Shi, Q., Shi, L. (2021). Effect of irradiation treatment on the lipid composition and nutritional quality of goat meat. Food Chemistry, 351, Article 129295. https://doi.org/10.1016/j.foodchem.2021.129295
65. Zhang, J., Zhang, Q., Fan, J., Yu, J., Li, K., Bai, J. (2023). Lipidomics reveals alterations of lipid composition and molecular nutrition in irradiated marble beef. Food Chemistry: X, 17, Article 100617. https://doi.org/10.1016/j.fochx.2023.100617
66. Mostafavi, H.A., Mirmajlessi, S.M., Fathollahi, H. (2012). The potential of food irradiation: Benefits and limitations. Chapter in a book: Trends in Food Science and Technology. IntechOpen, 2012. https://doi.org/10.1016/j.tifs.2012.12.002
67. Kim, Y. H., Nam, K. C., Ahn, D. U. (2002). Volatile profiles, lipid oxidation and sensory characteristics of irradiated meat from different animal species. Meat Science, 61(3), 257–265. https://doi.org/10.1016/s0309-1740(01)00191-7
68. Dionísio, A.P., Gomes, R.T., Oetterer, M. (2009). Ionizing radiation effects on food vitamins: A review. Brazilian Archives of Biology and Technology, 52(5), 1267–1278. https://doi.org/10.1590/S1516-89132009000500026
69. Hughes, J. M., Oiseth, S. K., Purslow, P. P., Warner, R. D. (2014). A structural approach to understanding the interactions between colour, water-holding capacity and tenderness. Meat Science, 98(3), 520–532. https://doi.org/10.1016/j.meatsci.2014.05.022
70. Bliznyuk, U., Avdyukhina, V., Borshchegovskaya, P., Bolotnik, T., Ipatova, V., Nikitina, Z. et al. (2022). Effect of electron and X-ray irradiation on microbiological and chemical parameters of chilled turkey. Scientific Reports, 12(1), Article 750. https://doi.org/10.1038/s41598-021-04733-3
71. Lv, M., Mei, K., Zhang, H., Xu, D., Yang, W. (2018). Effects of electron beam irradiation on the biochemical properties and structure of myofibrillar protein from Tegillarca granosa meat. Food Chemistry, 254, 64–69. https://doi.org/10.1016/j.foodchem.2018.01.165
72. Rane, S. A., Zende, R. J., Vaidya, V. M., Rawat, K. P., Sharma, K. S. S., Khillare, R. S., et al. (2019). Effect of electron beam irradiation on quality a ributes of chicken nuggets stored at refrigeration temperature. Journal of Veterinary Public Health, 17 (2), 82–88.
Review
For citations:
Qadr H.M., Salih N.F. A review of the irradiation effect on the quality and safety of different types of meat. Theory and practice of meat processing. 2024;9(4):314-322. (In Russ.) https://doi.org/10.21323/2414-438X-2024-9-4-314-322