Preview

Теория и практика переработки мяса

Расширенный поиск

Evaluation of meat and meat product oxidation and off-flavor formation: Managing oxidative changes

https://doi.org/10.21323/2414-438X-2023-8-4-302-315

Аннотация

One of the primary issues with processed foods during heat treatment and freezing storage is fat oxidation, which causes significant changes in fats due to their interaction with reactive oxygen species (ROS). This interaction leads to the creation of various aldehydes that have a high affinity for large molecules, such as proteins, leading to the formation of final products of advanced oxidation processes that contribute to food spoilage. Co-oxidation can also result in extensive damage. Another problem affecting the quality and nutritional value of meat products is protein oxidation, which can occur during storage via freezing and thawing or as a result of heat treatment. Heat treatment can cause physical and chemical changes, such as the loss of some essential amino acids and the transformation of certain amino acids into carbonyl compounds via various mechanisms. Protein oxidation is indicated by the accumulation of these carbonyl compounds, and the heat treatment can lead to the denaturation of myoglobin, which is responsible for the brown color of cooked meat and is influenced by several factors. Active protein aggregates can interact with the oxidation products of polyunsaturated fatty acids and with carbohydrate glycation or glycoxidation to produce Maillard products. It is critical to understand the oxidative changes that occur in fats and proteins in food, particularly in meat products, since these components are among the primary constituents of food.

Об авторах

M. A. Al-Shibli
Department of Food Science, College of Agriculture, University of Basrah
Ирак

Mayada A. Al-Shibli, Assistant Professor

Basrah, 61004, Iraq

Tel.: +964–770–261–11–07



R. M. Al-Ali
Department of Food Science, College of Agriculture, University of Basrah
Ирак

Rawdah M. Al-Ali, Professor

Basrah, 61004, Iraq

Tel.: +964–780–141–76–81



A. Z. Hashim
Department of Food Science, College of Agriculture, University of Basrah
Ирак

Alia Z. Hashim, Associate Professor

Basrah, 61004, Iraq

Tel.: +964–770–560–61–10



A. B. Altemimi
Department of Food Science, College of Agriculture, University of Basrah; College of Medicine, University of Warith Al-Anbiyaa
Ирак

Ammar B. Altemimi, Associate Professor

Basrah, 61004, Iraq;

Karbala 56001, Iraq

Tel.: +964–773–564–00–90



N. Elsayed
Food Science Department, Faculty of Agriculture, Cairo University
Египет

Nesren Elsayed, Associate Professor

1, Gamaa Street, Giza, 12613, Egypt

Tel.: + 2–0112–244–58–88



T. G. Abedelmaksoud
Food Science Department, Faculty of Agriculture, Cairo University
Египет

Tarek G. Abedelmaksoud, Associate Professor

1, Gamaa Street, Giza, 12613, Egypt

Tel.: +2–0110–144–12–80



Список литературы

1. Gómez, I., Janardhanan, R., Ibañez, F. C., Beriain, M. J. (2020). The effects of processing and preservation technologies on meat quality: Sensory and nutritional aspects. Foods, 9(10), Article 1416. https://doi.org/10.3390/foods9101416

2. EU. (2013). Council Directive 89/108/EEC of 21 December 1988 on the approximation of the laws of the Member States relating to quick-frozen foodstuffs for human consumption. Retrieved from https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A31989L0108 Accessed February 25, 2023.

3. Leygonie, C., Britz, T. J., Hoffman, L. C. (2012). Impact of freezing and thawing on the quality of meat: Review. Meat Science, 91(2), 93–98. https://doi.org/10.1016/j.meatsci.2012.01.013

4. Soyer, A., Özalp, B., Dalmış, Ü., Bilgin, V. (2010). Effects of freezing temperature and duration of frozen storage on lipid and protein oxidation in chicken meat. Food Chemistry, 120(4), 1025–1030. https://doi.org/10.1016/j.foodchem.2009.11.042

5. Bao, Y., Ertbjerg, P., Estévez, M., Yuan, L., Gao, R. (2021). Freezing of meat and aquatic food: Underlying mechanisms and implications on protein oxidation. Comprehensive Reviews in Food Science and Food Safety, 20(6), 5548–5569. https://doi.org/10.1111/1541-4337.12841

6. Al-Dalali, S., Li, C., Xu, B. (2022). Effect of frozen storage on the lipid oxidation, protein oxidation, and flavor profile of marinated raw beef meat. Food Chemistry, 376, Article 131881. https://doi.org/10.1016/j.foodchem.2021.131881

7. Kehm, R., Baldensperger, T., Raupbach, J., Höhn, A. (2021). Protein oxidation — formation mechanisms, detection and relevance as biomarkers in human diseases. Redox Biology, 42, Article 101901. https://doi.org/10.1016/j.redox.2021.101901

8. 8.American Heart Association (2023). What diet is recommended by the American Heart Association? Retrieved from https://www.heart.org/en/health-topics/caregiver-support/what-is-a-serving Accessed February 14, 2023.

9. Abdel-Naeem, H. H. S., Sallam, K. I., Zaki, H.M.B.A. (2021). Effect of different cooking methods of rabbit meat on topographical changes, physicochemical characteristics, fatty acids profile, microbial quality and sensory attributes. Meat Science, 181, Article 108612. https://doi.org/10.1016/j.meatsci.2021.108612

10. Code of Federal Regulations. (2001). § 319.15 Miscellaneous beef products. Retrieved from https://www.ecfr.gov/current/title-9/chapter-III/subchapter-A/part-319/subpart-B/section-319.15 Accessed February 15, 2023.

11. Baioumy, A. A., Abedelmaksoud, T. G. (2021). Quality properties and storage stability of beef burger as influenced by addition of orange peels (albedo). Theory and Practice of Meat Processing, 6(1), 33–38. https://doi.org/10.21323/2414-438X2021-6-1-33-38

12. Ritz, E., Hahn, K., Ketteler, M., Kuhlmann, M. K., Mann, J. (2012). Phosphate additives in food — a health risk. Deutsches Ärzteblatt International, 109(4), 49–55. https://doi.org/10.3238/arztebl.2012.0049

13. Abdelhai, M. H., Sulieman, A. M. E., Babiker, E. R. B. (2015). Some chemical and microbiological characteristics of shawerma meat product. Journal of Food and Nutritional Disorders, 4(2), Article 1000167. https://doi.org/10.4172/2324-9323.1000167

14. Ahmed, A.M., El-Hakem, N.A.B., Ibrahim, G.A. (2015). Chemical and microbial assessment of beef and chicken shawarma sandwiches in Ismailia governorate and its impact on consumer health. Egyptian Journal of Chemistry and Environmental Health, 1(1), 686–693.

15. Posgay, M., Greff, B., Kapcsandi, V., Lakatos, E. (2022). Effect of Thymus vulgaris L. essential oil and thymol on the microbiological properties of meat and meat products. Heliyon, 8(10), Article e10812. https://doi.org/10.1016/j.heliyon.2022.e10812

16. Pal, M., Devranl, M. (2018). Application of various techniques for meat preservation. Journal of Experimental Food Chemistry, 4(1), Article 1000134. https://doi.org/10.4172/2472-0542.1000134

17. Zhou, G.H., Xu, X.L., Liu, Y. (2010). Preservation technologies for fresh meat - a review. Meat Science 86(1), 119–128. https://doi.org/10.1016/j.meatsci.2010.04.033

18. Utrera, M., Morcuende, D., Estévez, M. (2014). Temperature of frozen storage affects the nature and consequences of protein oxidation in beef patties. Meat Science, 96(3), 1250–1257. https://doi.org/10.1016/j.meatsci.2013.10.032

19. Lawrie, R. A., Ledward, D. A. (2006). Lawrie’s Meat Science. Cambridge England: Woodhead Publishing Limited, 2006.

20. Dave, D., Ghaly, A.E. (2011). Meat spoilage mechanisms and preservation techniques: A critical review. American Journal of Agricultural and Biological Sciences, 6(4), 486–510. https://doi.org/10.3844/ajabssp.2011.486.510

21. Bintsis, T., Litopoulou-Tzanetaki, E., Robinson, R. K. (2000). Existing and potential applications of ultraviolet light in the food industry — a critical review. Journal of the Science of Food and Agriculture, 80(6), 637–645. https://doi.org/10.1002/(SICI)1097-0010(20000501)80:6<637:: AID-JSFA603>3.0.CO;2-1

22. Heinz, G., Hautzinger P. (2007). Meat processing technology for Small to medium scale producers. Food and Agriculture Organization of the United Nations Regional Office for Asia and the Pacific, Bangkok, 2007. Retrieved from https://www.fao.org/3/ai407e/ai407e.pdf Accessed February 14, 2023.

23. Moghtadaei, M., Soltanizadeh, N., Goli, S. A. H. (2018). Production of sesame oil oleogels based on beeswax and application as partial substitutes of animal fat in beef burger. Food Research International, 108, 368–377. https://doi.org/10.1016/j.foodres.2018.03.051

24. Sobral, M. M. C., Casal, S., Faria, M. A., Cunha, S. C., Ferreira, I. M. P.L.O. (2020). Influence of culinary practices on protein and lipid oxidation of chicken meat burgers during cooking and in vitro gastrointestinal digestion. Food and Chemical Toxicology, 141, Article 111401. https://doi.org/10.1016/j.fct.2020.111401

25. Tharukliling, S., Radiati, L. E., Thohari, I., Susilo, A. (2021). Colour and chemical characteristics of patty burger added with red fruit paste (Pandanus conoideus Lamk). IOP Conference Series: Earth and Environmental Science, 788(1), Article 012075. IOP Publishing. https://doi.org/10.1088/1755-1315/788/1/012075

26. Al-Juhaimi, F., Adiamo, O. Q., Alsawmahi, O. N., Gahfoor, K., Sarker, M. Z. I., Ahmed, I. A. M. et al. (2017). Effect of pistachio seed hull extracts on quality attributes of chicken burger. CyTA-Journal of Food, 15(1), 9–14. https://doi.org/10.1080/19476337.2016.1193057

27. Al-Juhaimi, F., Ghafoor, K., Hawashin, M. D., Alsawmahi, O. N., Babiker, E. E. (2016). Effects of different levels of Moringa (Moringa oleifera) seed flour on quality attributes of beef burgers. CyTA-Journal of Food, 14(1), 1–9. https://doi.org/10.1080/19476337.2015.1034784

28. Abdelhai, M. H., Sulieman, A. M. E., Babiker, E. R. B. (2015). Some chemical and microbiological characteristics of shawerma meat product. Journal of Food and Nutritional Disorders, 4(2), Article 1000168. https://doi.org/10.4172/2324-9323.1000168

29. Shehata, M. F., Salama, N. A., Helmy, S. A., Mohamed, A. T. (2022). Quality improvement of camel meat burger formulated with fat replacers during frozen storage. Egyptian Journal of Nutrition and Feeds, 25(1), 53–66. https://doi.org/10.21608/ejnf.2022.236558

30. Augustine, J., Troendle, E. P., Barabas, P., McAleese, C. A., Friedel, T., Stitt, A. W. et al. (2021). The role of lipoxidation in the pathogenesis of diabetic retinopathy. Frontiers in Endocrinology, 11, Article 621938. https://doi.org/10.3389/fendo.2020.621938

31. Falowo, A. B., Fayemi, P.O., Muchenje, V. (2014) Natural antioxidants against lipid–protein oxidative deterioration in meat and meat products: A review. Food Research International, 64, 171–181. https://doi.org/10.1016/j.foodres.2014.06.022

32. Liu, Y., Zhang, L., Gao, S., Bao, Y., Tan, Y., Luo, Y. et al. (2022). Effect of protein oxidation in meat and exudates on the water holding capacity in bighead carp (Hypophthalmichthys nobilis) subjected to frozen storage. Food Chemistry, 370, Article 131079. https://doi.org/10.1016/j.foodchem.2021.131079

33. Huang, X., Ahn, D.U. (2019) Lipid oxidation and its implications to meat quality and human health. Food Science and Biotechnology, 28(5), 1275–1285. https://doi.org/10.1007/s10068-019-00631-7

34. Berlett, B. S., Stadtman, E. R. (1997). Protein oxidation in aging, disease, and oxidative stress. Journal of Biological Chemistry, 272(33), 20313–20316. https://doi.org/10.1074/jbc.272.33.20313

35. Estévez, M. (2011). Protein carbonyls in meat systems: A review. Meat Science, 89(3), 259–279. https://doi.org/10.1016/j.meatsci.2011.04.025

36. Stadtman, E. R., Levine, R. L. (2000). Protein oxidation. Annals of the New York Academy of Sciences, 899(1), 191–208. https://doi.org/10.1111/j.1749-6632.2000.tb06187.x

37. Rowe, L. J., Maddock, K. R., Lonergan, S. M., Huff-Lonergan, E. (2004). Influence of early postmortem protein oxidation on beef quality. Journal of Animal Science, 82(3), 785–793. https://doi.org/10.2527/2004.823785x

38. Hematyar, N., Rustad, T., Sampels, S., Dalsgaard, T.K. (2019). Relationship between lipid and protein oxidation in fish. Aquaculture Research, 50(5), 1393–1403. https://doi.org/10.1111/are.14012

39. Hellwig, M. (2020). Analysis of protein oxidation in food and feed products. Journal of Agricultural and Food Chemistry, 68(46), 12870–12885. https://doi.org/10.1021/acs.jafc.0c00711

40. Zhang, L., Li, Q., Bao, Y., Tan, Y., Lametsch, R., Hong, H. et al. (2022). Recent advances on characterization of protein oxidation in aquatic products: A comprehensive review. Critical Reviews in Food Science and Nutrition, 1–20. https://doi.org/10.1080/10408398.2022.2117788

41. Zhang, W., Xiao, S., Ahn, D. U. (2013). Protein oxidation: basic principles and implications for meat quality. Critical Reviews in Food Science and Nutrition, 53(11), 1191–1201. https://doi.org/10.1080/10408398.2011.577540

42. Houée-Lévin, C., Bobrowski, K., Horakova, L., Karademir, B., Schöneich, C., Davies, M. J. et al. (2015). Exploring oxidative modifications of tyrosine: An update on mechanisms of formation advances in analysis and biological consequences. Free Radical Research, 49(4), 347–373. https://doi.org/10.3109/10715762.2015.1007968

43. Giulivi, C., Davies, K. J. (1994). Dityrosine: A marker for oxidatively modified proteins and selective proteolysis. Methods in Inzymology, 233, 363–371. https://doi.org/10.1016/s0076-6879(94)33042-5

44. Kanner, J., Hazan, B., Doll, L. (1988). Catalytic” free” iron ions in muscle foods. Journal of Agricultural and Food Chemistry, 36(3), 412–415. https://doi.org/10.1021/jf00081a002

45. Stadtman, E. R. (1990). Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radical Biology and Medicine, 9(4), 315–325. https://doi.org/10.1016/0891-5849(90)90006-5

46. Papuc, C., Goran, G. V., Predescu, C. N., Nicorescu, V. (2017). Mechanisms of oxidative processes in meat and toxicity induced by postprandial degradation products: A review. Comprehensive Reviews in Food Science and Food Safety, 16(1), 96–123. https://doi.org/10.1111/1541-4337.12241

47. Da Silva, S. L., Marangoni, C., Brum, D. S., Vendruscolo, R. G., Silva, M. S., de Moura, H. C. et al. (2018). Effect of dietary olive leaves on the lipid and protein oxidation and bacterial safety of chicken hamburgers during frozen storage. International Food Research Journal, 25(1), 383–391.

48. Soncu, E. D. (2020). Protein oxidation and subsequent changes in chicken breast and thigh meats during long-term frozen storage. Agricultural and Food Science, 29(5), 505–514. https://doi.org/10.23986/afsci.97338

49. Xia, C., Wen, P., Yuan, Y., Yu, X., Chen, Y., Xu, H. et al. (2021). Effect of roasting temperature on lipid and protein oxidation and amino acid residue side chain modification of beef patties. RSC Advances, 11(35), 21629–21641. https://doi.org/10.1039/d1ra03151a

50. Ferreira, V.C.S., Morcuende, D., Madruga, M. S., Silva, F. A. P., Estevez, M. (2018). Role of protein oxidation in the nutritional loss and texture changes in ready-to-eat chicken patties. International Journal of Food Science and Technology, 53(6), 1518–1526. https://doi.org/10.1111/ijfs.13733

51. Parvin, R., Zahid, M. A., Seo, J. -K., Park, J., Ko, J., Yang, H.-S. (2020). Influence of reheating methods and frozen storage on physicochemical characteristics and warmed-over flavor of nutmeg extract-enriched precooked beef meatballs. Antioxidants, 9(8), Article 670. https://doi.org/10.3390/antiox9080670

52. Cai, W. -Q., Chen, Y. -W., Dong, X. -P., Shi, Y. -G., Wei, J. -L., Liu, F. -J. (2021). Protein oxidation analysis based on comparative proteomic of Russian sturgeon (Acipenser gueldenstaedti) after sous-vide cooking. Food Control, 121, Article 107594. https://doi.org/10.1016/j.foodcont.2020.107594

53. Hu, L., Ren, S., Shen, Q., Chen, J., Yea, X., Ling, J. (2017). Proteomic study of the effect of different cooking methods on protein oxidation in fish fillets. RSC Advances, 7, 27496–27505. https://doi.org/10.1039/C7RA03408C

54. Utrera, M., Estévez, M. (2013). Oxidative damage to poultry, pork, and beef during frozen storage through the analysis of novel protein oxidation markers. Journal of Agricultural and Food Chemistry, 61(33), 7987–7993. https://doi.org/10.1021/jf402220q

55. Lorido, L., Ventanas, S. Akcan, T., Estévez, M. (2015). Effect of protein oxidation on the impaired quality of dry-cured loins produced. from frozen pork meat. Food Chemistry, 196, 1310–1314. http://doi.org/10.1016/j.foodchem.2015.10.092

56. Lorenzo, J. M., Sineiro, J., Amado, I. R., Franco, D. (2014). Influence of natural extracts on the shelf life of modified atmosphere-packaged pork patties. Meat Science, 96(1), 526–534. http://doi.org/10.1016/j.meatsci.2013.08.007

57. Tomasevic, I., Djekic, I., Font-i-Furnols, M., Terjung, N., Lorenzo, J. M. (2021). Recent advances in meat color research. Current Opinion in Food Science, 41, 81–87. http://doi.org/10.1016/j.cofs.2021.02.012

58. Lebret, B., Povše, M. P., Candek-Potokar, M. (2015). Muscle and fat colour. Chapter in a book: Handbook of Reference Methods for the Assessment of Meat Quality Assessment Parameters, 2015.

59. Greene, B. E., Hsin, I. M., Zipser, M. Y. W. (1971). Retardation of oxidative color changes in raw ground beef. Journal of Food Science, 36(6), 940–942. https://doi.org/10.1111/j.1365–2621.1971.tb15564

60. Trujillo-Santiago, E., Villalobos-Delgado, L. H., Guzmán-Pantoja, L. E., López, M. G., Zafra-Ciprián, D. I., Nevárez-Moorillón, G. V. et al. (2021). The effects of Hierba Santa (Piper auritum Kunth) on the inhibition of lipid oxidation in beef burgers. LWT, 146, Article 111428. https://doi.org/10.1016/j.lwt.2021.111428

61. Wang, Z., He, Z., Gan, X., Li, H. (2018). Interrelationship among ferrous myoglobin, lipid and protein oxidations in rabbit meat during refrigerated and superchilled storage. Meat Science, 146, 131–139. https://doi.org/10.1016/j.meatsci.2018.08.006

62. Zhu, W., Han, M., Bu, Y., Li, X., Yi, S., Xu, Y. et al. (2022). Plant polyphenols regulating myoglobin oxidation and color stability in red meat and certain fish: A review. Critical Reviews in Food Science and Nutrition, 1–13. https://doi.org/10.1080/10408398.2022.2122922

63. Suman, S. P., Nair, M. N., Joseph, P., Hunt, M. C. (2016). Factors influencing internal color of cooked meats. Meat Science, 120, 133–144. https://doi.org/10.1016/j.meatsci.2016.04.006

64. Suman, S. P., Joseph, P. (2013). Myoglobin chemistry and meat color. Annual Review of Food Science and Technology, 4(1), 79–99. https://doi.org/10.1146/annurev-food-030212-182623

65. Mancini, R. A., Ramanathan, R. (2019). Molecular basis of meat color. Chapter in a book: Meat quality analysis. Academic Press, 2019.

66. Lund, M. N., Ray, C. A. (2017). Control of Maillard reactions in foods: Strategies and chemical mechanisms. Journal of Agricultural and Food Chemistry, 65(23), 4537–4552. https://doi.org/10.1021/acs.jafc.7b00882

67. Chansataporn, W., Nopharatana, M., Samuhasaneetoo, S., Siriwattanayotin, S., Tangduangdee, C. (2019). Effects of temperature on the main intermediates and products of the Maillard reaction in a chicken breast meat model system. Technology, 15(4), 539–556.

68. Poulsen, M. W., Hedegaard, R. V., Andersen, J. M., de Courten, B., Bügel, S., Nielsen, J. et al. (2013). Advanced glycation endproducts in food and their effects on health. Food and Chemical Toxicology, 60, 10–37. https://doi.org/10.1016/j.fct.2013.06.052

69. Wazir, H., Chay, S.Y., Zarei, M., Hussin, F.S., Mustapha, N.A., Ibadullah, W.Z.W. et al. (2019). Effects of storage time and temperature on lipid oxidation and protein co-oxidation of low-moisture shredded meat products. Antioxidants, 8(10), Article 486. https://doi.org/10.3390/antiox8100486

70. Nie, C., Li, Y., Qian, H., Ying, H., Wang, L. (2020). Advanced glycation end products in food and their effects on intestinal tract. Critical Reviews in Food Science and Nutrition, 62(11), 3103–3115. https://doi.org/10.1080/10408398.2020.1863904

71. Niyati-Shirkhodaee, F., Shibamoto, T. (1993). Gas chromatographic analysis of glyoxal and methylglyoxal formed from lipids and related compounds upon ultraviolet irradiation. Journal of Agricultural and Food Chemistry, 41(2), 227–230. https://doi.org/10.1021/jf00026a016

72. Cämmerer, B., Wedzicha, B. L., Kroh, L. W. (1999). Nonenzymatic browning reactions of retro-aldol degradation products of carbohydrates. European Food Research and Technology, 209(3), 261–265. https://doi.org/10.1007/s002170050490

73. Roldan, M., Loebner, J., Degen, J., Henle, T., Antequera, T., Ruiz-Carrascal, J. (2015). Advanced glycation end products, physico-chemical and sensory characteristics of cooked lamb loins affected by cooking method and addition of flavour precursors. Food Chemistry, 168, 487–495. https://doi.org/10.1016/j.foodchem.2014.07.100

74. Qian, S., Li, X., Wang, H., Mehmood, W., Zhang, C., Blecker, C. (2021). Effects of frozen storage temperature and duration on changes in physicochemical properties of beef myofibrillar protein. Journal of Food Quality, 2021, Article 8836749. https://doi.org/10.1155/2021/8836749

75. Hasenkopf, K., Rönner, B., Hiller, H., Pischetsrieder, M. (2002). Analysis of glycated and ascorbylated proteins by gas chromatography — mass spectrometry. Journal of Agricultural and Food Chemistry, 50(20), 5697–5703. https://doi.org/10.1021/jf020411u

76. Pryor, W.A., Castle, L. (1984). Chemical methods for the detection of lipid hydroperoxides. Methods in Enzymology, 5, 293–299. https://doi.org/10.1016/S0076-6879(84)05037-0

77. Yang, X., Boyle, R. A. (2016). Sensory evaluation of oils/fats and oil/fat–based foods. Chapter in a book: Oxidative stability and shelf life of foods containing oils and fats. AOCS Press, 2016. https://doi.org/10.1016/B978-1-63067-056-6.00003-3

78. Abeyrathne, E. D. N. S., Nam, K., Ahn, D. U. (2021). Analytical methods for lipid oxidation and antioxidant capacity in food systems. Antioxidants, 10(10), Article 1587. https://doi.org/10.3390/antiox10101587

79. Osawa, C. C., Gonçalves, L. A. G., Ragazzi, S. (2007). Correlation between free fatty acids of vegetable oils evaluated by rapid tests and by the official method. Journal of Food Composition and Analysis, 20(6), 523–528. https://doi.org/10.1016/j.jfca.2007.02.002

80. Weber, D., Davies, M. J., Grune, T. (2015). Determination of protein carbonyls in plasma, cell extracts, tissue homogenates, isolated proteins: Focus on sample preparation and derivatization conditions. Redox Biology, 5, 367–380. https://doi.org/10.1016/j.redox.2015.06.005

81. McDonagh, B., Martínez-Acedo, P., Vázquez, J., Padilla, C. A., Sheehan, D., Bárcena, J. A. (2012). Application of iTRAQ reagents to relatively quantify the reversible redox state of cysteine residues. International Journal of Proteomics, 2012, Article 514847. https://doi.org/10.1155/2012/514847

82. Mazur, P., Dumnicka, P., Tisończyk, J., Ząbek-Adamska, A., Drożdż, R. (2023). SDS electrophoresis on gradient polyacrylamide gels as a semiquantitative tool for the evaluation of proteinuria. Diagnostics, 13(9), Article 1513. https://doi.org/10.3390/diagnostics13091513

83. Verrastro, I., Pasha, S., Jensen, K.T., Pitt, A. R., Spickett, C. M. (2015). Mass spectrometry-based methods for identifying oxidized proteins in disease: Advances and challenges. Biomolecules, 5(2), 378–411. https://doi.org/10.3390/biom5020378

84. Candoğan, K., Altuntas, E. G., İğci, N. (2021). Authentication and quality assessment of meat products by fourier-transform infrared (FTIR) spectroscopy. Food Engineering Reviews, 13, 66–91. https://doi.org/10.1007/s12393-020-09251-y

85. Cho, S., Moazzem, M. S. (2022). Recent applications of potentiometric electronic tongue and electronic nose in sensory evaluation. Preventive Nutrition and Food Science, 27(4), 354–364. https://doi.org/10.3746/pnf.2022.27.4.354

86. Fiorentini, M., Kinchla, A. J., Nolden, A. A. (2020). Role of sensory evaluation in consumer acceptance of plant-based meat analogs and meat extenders: A scoping review. Foods, 9(9), Article 1334. https://doi.org/10.3390/foods9091334


Рецензия

Для цитирования:


Al-Shibli M.A., Al-Ali R.M., Hashim A.Z., Altemimi A.B., Elsayed N., Abedelmaksoud T.G. Evaluation of meat and meat product oxidation and off-flavor formation: Managing oxidative changes. Теория и практика переработки мяса. 2023;8(4):302-315. https://doi.org/10.21323/2414-438X-2023-8-4-302-315

For citation:


Al-Shibli M.A., Al-Ali R.M., Hashim A.Z., Altemimi A.B., Elsayed N., Abedelmaksoud T.G. Evaluation of meat and meat product oxidation and off-flavor formation: Managing oxidative changes. Theory and practice of meat processing. 2023;8(4):302-315. https://doi.org/10.21323/2414-438X-2023-8-4-302-315

Просмотров: 687


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)