Preview

Теория и практика переработки мяса

Расширенный поиск

Technological approaches to the extraction and purification by ultrafiltration techniques of target protein molecules from animal tissues: a review

https://doi.org/10.21323/2414-438X-2022-7-2-76-82

Аннотация

Effective isolation and purification of protein is a great challenge nowadays. The key aspect is protein stability and solubility, which primarily depend on protein structure and its amino acid sequence. Manipulations with pH and ionic strength are the first at  tempts to increase protein stability and solubility. Different additives that are allowed or prohibited in the food industry are applied for overcoming protein aggregation. Sugars, polyhydric alcohols and amino acids are the most attractive among them. Trehalose, glycerol, arginine, glycine and proline demonstrated outstanding properties that make them perspective for application during iso  lation and purification of proteins singly or in combination with each other or othercompounds. However, the algorithm of effective isolation and purification of protein could be significantly varied depending on its structure.

Об авторах

Е. A. Kotenkova
V. M. Gorbatov Federal Research Center for Food Systems
Россия

Elena A.  Kotenkova, Candidate of Technical Sciences, Research Scientist, Experimental Clinic — Research Laboratory of Biologically Active Substances of an Animal Origin

26, Talalikhina str., 109316, Moscow



E. K. Polishchuk
V. M. Gorbatov Federal Research Center for Food Systems
Россия

Ekaterina K.  Polishchuk, Research Engineer, Research Scientist, Experimental Clinic — Research Laboratory of Biologically Active Substances of an Animal Origin

26, Talalikhina str., 109316, Moscow



Список литературы

1. Dimitrov, D. S. (2012). Therapeutic proteins. Methods in Molecular Biology, 899, 1–26. https://doi.org/10.1007/978-1-61779-921-1_1

2. Sauna, Z. E., Lagassé, H. A. D., Alexaki, A., Simhadri, V. L., Katagiri, N. H., Jankowski, W. et.al. (2017). Recent advances in (therapeutic protein) drug development. F1000Research, 6, Article 113. https://doi.org/10.12688/f1000research.9970.1

3. de Marco, A., Berrow, N., Lebendiker, M., Garcia-Alai, M., Knauer, S. H., Lopez-Mendez, B. et al. (2021). Quality control of protein reagents for the improvement of research data reproducibility. Nature Communications, 12(1), Article 2795. https://doi.org/10.1038/s41467-021-23167-z

4. Ismail, B. P., Senaratne-Lenagala, L., Stube, A., Brackenridge, A. (2020). Protein demand: Review of plant and animal proteins used in alternative protein product development and production. Animal Frontiers, 10(4), 53–63. https://doi.org/10.1093/af/vfaa040

5. Lukinova, E. A., Kotenkova, E. A., Polischuk, E. K. (2018). Influence of approaches to isolation of animal bioactive substances on antimicrobial action. Theory and Practice of Meat Processing, 3(3), 27–35. https://doi.org/10.21323/2414-438X-2018-3-3-27-35

6. Sanvictores, T., Farci, F. (2022). Biochemistry, Primary Protein Structure. StatPearls Publishing. Retrieved from https://www.ncbi.nlm.nih.gov/books/NBK564343/. Accessed April 14, 2022

7. Breda, A., Valadares, N. F., Norberto de Souza, O., Garratt, R. C. (2008). Protein Structure, Modelling and Applications. Chapter in a book: Bioinformatics in Tropical Disease Research: A Practical and Case-Study Approach. Bethesda (MD): National Center for Biotechnology Information (US). 2008. A06.

8. Sun, P. D., Foster, C. E., Boyington, J. C. (2004). Overview of Protein Structural and Functional Folds. Current Protocols in Protein Science, 35(1), 1711–171189. https://doi.org/10.1002/0471140864.ps1701s35

9. Aleksandrov, A., Polydorides, S., Archontis, G., Simonson, T. (2010). Predicting the acid/base behavior of proteins: A Constant-pH monte carlo approach with generalized born solvent. The Journal of Physical Chemistry B, 114(32), 10634–10648. https://doi.org/10.1021/jp104406x

10. Audain, E., Ramos, Y., Hermjakob, H., Flower, D. R., PerezRiverol, Y. (2016). Accurate estimation of isoelectric point of protein and peptide based on amino acid sequences. Bioinformatics, 32(6), 821–827. https://doi.org/10.1093/bioinformatics/btv674

11. Nehete, J., Bhambar, R., Narkhede, M., Gawali, S. (2013). Natural proteins: Sources, isolation, characterization and applications. Pharmacognosy Reviews, 7(14), 107–116. https://doi.org/10.4103/0973–7847.120508

12. Verollet, R. (2008). A major step towards efficient sample preparation with bead-beating. BioTechniques, 44(6), 832–833. https://doi.org/10.2144/000112893

13. Burden, D. W. (2012). Guide to the Disruption of Biological Samples — 2012. Random Primers, 12, 1–25.

14. Franca-Oliveira, G., Fornari, T., Hernández-Ledesma, B. (2021). A review on the extraction and processing of natural source-derived proteins through eco-innovative approaches. Processes, 9(9), Article 1626. https://doi.org/10.3390/pr9091626

15. Novák, P., Havlíček, V. (2016). Protein Extraction and Precipitation. Chapter in a book: Proteomic Profiling and Analytical Chemistry. Elsevier. 2016.

16. Yasothai, R., Giriprasad, R. (2015). Acid/Alkaline solublization method of processing protein. International Journal of Science, Environment and Technology, 4(1), 96–100.

17. Hani, F. M., Cole, A. E., Altman, E. (2019). The ability of salts to stabilize proteins in vivo or intracellularly correlates with the Hofmeister series of ions. International Journal of Biochemistry and Molecular Biology, 10(3), 23–31.

18. Sharpe, T. (2014). Preventing Protein Aggregation. Biozentrum Biophysics Facility. Retrieved from https://www.biozentrum.unibas.ch/fileadmin/redaktion/05_Facilities/01_Technology_Platforms/BF/Protocols/Preventing_Protein_Aggregation.pdf. Accessed April 19, 2022.

19. Castro-Muñoz, R., García-Depraect, O., León-Becerril, E., Cassano, A., Conidi, C., Fíla, V. (2021). Recovery of proteinbased compounds from meat by-products by membrane-assisted separations: a review. Journal of Chemical Technology and Biotechnology, 96(11), 3025–3042. https://doi.org/10.1002/jctb.6824

20. Reig, M., Vecino, X., Cortina, J. L. (2021). Use of membrane technologies in dairy industry: An overview. Foods, 10(11), Article 2768. https://doi.org/10.3390/foods10112768

21. Miron, S. M., Dutournié, P., Thabet, K., Ponche, A. (2019). Filtration of protein-based solutions with ceramic ultrafiltration membrane. Study of selectivity, adsorption, and protein denaturation. Comptes Rendus Chimie, 22(2–3), 198–205. https://doi.org/10.1016/j.crci.2018.09.011

22. Arakawa, T., Ejima, D., Akuta, T. (2017). Protein aggregation under high concentration/density state during chromatographic and ultrafiltration processes. International Journal of Biological Macromolecules, 95, 1153–1158. https://doi.org/10.1016/j.ijbiomac.2016.11.005

23. Cromwell, M. E. M., Hilario, E., Jacobson, F. (2006). Protein aggregation and bioprocessing. The AAPS Journal, 8(3), E572– E579, Article 66. https://doi.org/10.1208/aapsj080366

24. Ratnaningsih, E., Reynard, R., Khoiruddin, K., Wenten, I. G., Boopathy, R. (2021). Recent advancements of UF-based separation for selective enrichment of proteins and bioactive peptides — A review. Applied Sciences, 11(3), Article 1078. https://doi.org/10.3390/app11031078

25. Callahan, D. J., Stanley, B., Li, Y. (2014). Control of Protein Particle Formation During Ultrafiltration/Diafiltration Through Interfacial Protection. Journal of Pharmaceutical Sciences, 103(3), 862–869. https://doi.org/10.1002/jps.23861

26. Fernandez-Cerezo, L., Rayat, A. C. M. E., Chatel, A., Pollard, J. M., Lye, G. J., Hoare, M. (2020). The prediction of the operating conditions on the permeate flux and on protein aggregation during membrane processing of monoclonal antibodies. Journal of Membrane Science, 596, Article 117606. https://doi.org/10.1016/j.memsci.2019.117606

27. Bondos, S. E., Bicknell, A. (2003). Detection and prevention of protein aggregation before, during, and after purification. Analytical Biochemistry, 316(2), 223–231. https://doi.org/10.1016/S0003-2697(03)00059-9

28. Lebendiker, M., Danieli, T. (2014). Production of prone-to-aggregate proteins. FEBS Letters, 588(2), 236–246. https://doi.org/10.1016/j.febslet.2013.10.044

29. Leibly, D. J., Nguyen, T. N., Kao, L. T., Hewitt, S. N., Barrett, L. K., van Voorhis, W. C. (2012). Stabilizing additives added during cell lysis aid in the solubilization of recombinant proteins. PLoS ONE, 7(12), Article e52482. https://doi.org/10.1371/journal.pone.0052482

30. Bhat, E. A., Abdalla, M., Rather, I. A. (2018). Key factors for successful protein purification and crystallization. Global Journal of Biotechnology and Biomaterial Science, 4(1), 001–007. https://doi.org/10.17352/gjbbs.000010

31. Jahan, I., Nayeem, S. M. (2018). Effect of urea, arginine, and ethanol concentration on aggregation of 179CVNITV184 fragment of sheep prion protein. ACS Omega, 3(9), 11727–11741. https://doi.org/10.1021/acsomega.8b00875

32. Singh, A., Upadhyay, V., Upadhyay, A. K., Singh, S. M., Panda, A. K. (2015). Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microbial Cell Factories, 14(1), Article 41. https://doi.org/10.1186/s12934-015-0222-8

33. Gifre-Renom, L., Cano-Garrido, O., Fàbregas, F., Roca-Pinilla, R., Seras-Franzoso, J., Ferrer-Miralles, N. et al. (2018). A new approach to obtain pure and active proteins from Lactococcus lactis protein aggregates. Scientific Reports, 8(1), Article 13917. https://doi.org/10.1038/s41598-018-32213-8

34. Akhremko, A., Vasilevskaya, E., Fedulova, L. (2020). Adaptation of two-dimensional electrophoresis for muscle tissue analysis. Potravinarstvo Slovak Journal of Food Sciences, 14, 595– 601. https://doi.org/10.5219/1380

35. The Protein Man’s Blog | A Discussion of Protein Research. Tips for Preventing Protein Aggregation & Loss of Protein Solubility. Retrieved from https://info.gbiosciences.com/blog/tipsfor-preventing-protein-aggregation-loss-of-protein-solubility. Accessed April 19, 2022.

36. Liao, Y.-T., Manson, A. C., DeLyser, M. R., Noid, W. G., Cremer, P. S. (2017). Trimethylamine N-oxide stabilizes proteins via a distinct mechanism compared with betaine and glycine. Proceedings of the National Academy of Sciences, 114(10), 2479–2484. https://doi.org/10.1073/pnas.1614609114

37. Acharyya, A., Shin, D., Troxler, T., Gai, F. (2020). Can glycine betaine denature proteins? Physical Chemistry Chemical Physics, 22(15), 7794–7802. https://doi.org/10.1039/d0cp00397b

38. Singh, L. R., Dar, T. A., Rahman, S., Jamal, S., Ahmad, F. (2009). Glycine betaine may have opposite effects on protein stability at high and low pH values. Biochimica et Biophysica Acta (BBA) — Proteins and Proteomics, 1794(6), 929–935. https://doi.org/10.1016/j.bbapap.2009.02.005

39. Chui, T. C. Y., Kim, W., Ramsheh, A. S., Yang, C. (2020). Glycine Betaine synthesis and transport Proteins, BetTIBA and ProPU, in Escherichia coli K12 do not confer Resistance to SDS-EDTA induced Outer Membrane Stress. Undergraduate Journal of Experimental Microbiology and Immunology, 25, 1–7. https://doi.org/10.14288/ujemi.v25i.193262

40. Li, J., Chen, J., An, L., Yuan, X., Yao, L. (2020). Polyol and sugar osmolytes can shorten protein hydrogen bonds to modulate function. Communications Biology, 3(1), Article 528. https://doi.org/10.1038/s42003-020-01260-1

41. Schein, C. H. (1990). Solubility as a function of protein structure and solvent components. Nature Biotechnology, 8(4), 308– 317. https://doi.org/10.1038/nbt0490-308

42. Jain, N. K., Roy, I. (2008). Effect of trehalose on protein structure. Protein Science, 18(1), 24–36. https://doi.org/10.1002/pro.3

43. Rajan, R., Ahmed, S., Sharma, N., Kumar, N., Debas, A., Matsumura, K. (2021). Review of the current state of protein aggregation inhibition from a materials chemistry perspective: Special focus on polymeric materials. Materials Advances, 2(4), 1139– 1176. https://doi.org/10.1039/d0ma00760a

44. Olsson, C., Swenson, J. (2019). The role of disaccharides for protein–protein interactions — a SANS study. Molecular Physics, 117(22), 3408–3416. https://doi.org/10.1080/00268976.2019.1640400

45. Lee, J. C., Timasheff, S. N. (1981). The stabilization of proteins by sucrose. The Journal of Biological Chemistry, 256(14), 7193–7201.

46. Zapadka, K. L., Becher, F. J., Gomes dos Santos, A. L., Jackson, S. E. (2017). Factors affecting the physical stability (aggregation) of peptide therapeutics. Interface Focus, 7(6), Article 20170030. https://doi.org/10.1098/rsfs.2017.0030

47. Vagenende, V., Yap, M. G. S., Trout, B. L. (2009). Mechanisms of protein stabilization and prevention of protein aggregation by glycerol. Biochemistry, 48(46), 11084–11096. https://doi.org/10.1021/bi900649t

48. Hirai, M., Ajito, S., Sugiyama, M., Iwase, H., Takata, S., Shimizu, N. et al. (2018). Direct evidence for the effect of glycerol on protein hydration and thermal structural transition. Biophysical Journal, 115(2), 313–327. https://doi.org/10.1016/j.bpj.2018.06.005

49. Petersen, S. B., Jonson, V., Fojan, P., Wimmer, R., Pedersen, S. (2004). Sorbitol prevents the self-aggregation of unfolded lysozyme leading to an up to 13 °C stabilisation of the folded form. Journal of Biotechnology, 114(3), 269–278. https://doi.org/10.1016/j.jbiotec.2004.07.004

50. Soleymani, B., Mostafaie, A. (2019). Analysis of methods to improve the solubility of recombinant bovine sex determining region Y protein. Reports of Biochemistry and Molecular Biology, 8(3), 227–235.

51. Alibolandi, M., Mirzahoseini, H. (2011). Chemical assistance in refolding of bacterial inclusion bodies. Biochemistry Research International, 2011, Article 631607. https://doi.org/10.1155/2011/631607

52. Jin, W., Xing, Z., Song, Y., Huang, C., Xu, X., Ghose, S. et al. (2019). Protein aggregation and mitigation strategy in low pH viral inactivation for monoclonal antibody purification. mAbs, 11(8), 1479–1491. https://doi.org/10.1080/19420862.2019.1658493

53. Xu, Q., Deng, H., Li, X., Quan, Z.-S. (2021). Application of amino acids in the structural modification of natural products: A review. Frontiers in Chemistry, 9, Article 650569. https://doi.org/10.3389/fchem.2021.650569

54. Shiraki, K., Kudou, M., Fujiwara, S., Imanaka, T., Takagi, M. (2002). Biophysical effect of amino acids on the prevention of protein aggregation. Journal of Biochemistry, 132(4), 591–595. https://doi.org/10.1093/oxfordjournals.jbchem.a003261

55. Das, U., Hariprasad, G., Ethayathulla, A. S., Manral, P., Das, T. K., Pasha, S. et al. (2007). Inhibition of protein aggregation: Supramolecular assemblies of Arginine hold the key. PLoS ONE, 2(11), Article e1176. https://doi.org/10.1371/journal.pone.0001176

56. Tsumoto, K., Umetsu, M., Kumagai, I., Ejima, D., Philo, J. S., Arakawa, T. (2004). Role of arginine in protein refolding, solubilization, and purification. Biotechnology Progress, 20(5), 1301– 1308. https://doi.org/10.1021/bp0498793

57. Shukla, D., Trout, B. L. (2010). Interaction of arginine with proteins and the mechanism by which it inhibits aggregation. The Journal of Physical Chemistry B, 114(42), 13426–13438. https://doi.org/10.1021/jp108399g

58. Shaikh, A. R., Shah, D. (2015). Arginine-Amino acid interactions and implications to protein solubility and aggregation. The Journal of Engineering Research, 12(2), 1–14. https://doi.org/10.24200/tjer.vol12iss2pp1-14

59. Varughese, M. M., Newman, J. (2012). Inhibitory effects of arginine on the aggregation of bovine insulin. Journal of Biophysics, 2012, Article 434289. https://doi.org/10.1155/2012/434289

60. Wang, X.-T., Engel, P. C. (2009). An optimised system for refolding of human glucose 6-phosphate dehydrogenase. BMC Biotechnology, 9(1), Article 19. https://doi.org/10.1186/1472-6750-9-19

61. Kheddo, P. (2016). Effect of Arginine Glutamate on Protein Aggregation in Biopharmaceutical Formulation. Retrieved from https://www.research.manchester.ac.uk/portal/files/63039132/FULL_TEXT.PDF. Accessed April 20, 2022.

62. Golovanov, A. P., Hautbergue, G. M., Wilson, S. A., Lian, L.-Y. (2004). A simple method for improving protein solubility and longterm stability. Journal of the American Chemical Society, 126(29), 8933–8939. https://doi.org/10.1021/ja049297h

63. Shukla, D., Trout, B. L. (2011). Understanding the synergistic effect of arginine and glutamic acid mxtures on protein solubility. The Journal of Physical Chemistry B, 115(41), 11831–11839. https://doi.org/10.1021/jp204462t

64. Platts, L., Falconer, R. J. (2015). Controlling protein stability: Mechanisms revealed using formulations of arginine, glycine and guanidinium HCl with three globular proteins. International Journal of Pharmaceutics, 486(1–2), 131–135. https://doi.org/10.1016/j.ijpharm.2015.03.051

65. Imura, Y., Tagawa, T., Miyamoto, Y., Nonoyama, S., Sumichika, H., Fujino, Y.et al. (2021). Washing with alkaline solutions in protein A purification improves physicochemical properties of monoclonal antibodies. Scientific Reports, 11(1), Article 1827. https://doi.org/10.1038/s41598-021-81366-6

66. Zhang, Y.-B., Howitt, J., McCorkle, S., Lawrence, P., Springer, K., Freimuth, P. (2004). Protein aggregation during overexpression limited by peptide extensions with large net negative charge. Protein Expression and Purification, 36(2), 207–216. https://doi.org/10.1016/j.pep.2004.04.020

67. Lopez, E., Scott, N. E., Wines, B. D., Hogarth, P. M., Wheatley, A. K., Kent, S. J. et al. (2019). Low pH exposure during immunoglobulin G purification methods results in aggregates that avidly bind Fcγ receptors: Implications for measuring Fc dependent antibody functions. Frontiers in Immunology, 10, Article 2415. https://doi.org/10.3389/fimmu.2019.02415

68. Chen, S., Manabe, Y., Minamoto, N., Saiki, N., Fukase, K. (2016). Development of a simple assay system for protein-stabilizing efficiency based on hemoglobin protection against denaturation and measurement of the cooperative effect of mixing protein stabilizers. Bioscience, Biotechnology, and Biochemistry, 80(10), 1874–1878. https://doi.org/10.1080/09168451.2016.1189317

69. Samuel, D., Kumar, T.K.S., Ganesh, G., Jayaraman, G., Yang, P.-W., Chang, M.-M. et. al. (2008). Proline inhibits aggregation during protein refolding. Protein Science, 9(2), 344–352. https://doi.org/10.1110/ps.9.2.344

70. Kumat, T. K. S., Samuel, D., Jayaraman, G., Srimathi, T., Yu, C. (1998). The role of proline in the prevention of aggregation during protein folding in vitro. Biochemistry and Molecular Biology International, 46(3), 509–517.

71. Gentiluomo, L. (2020). Prediction and Characterization of Therapeutic Protein Aggregation. Retrieved from https://edoc.ub.uni-muenchen.de/26123/1/Gentiluomo_Lorenzo.pdf. Accessed April 21, 2022.

72. Falconer, R. J., Chan, C., Hughes, K., Munro, T. P. (2011). Stabilization of a monoclonal antibody during purification and formulation by addition of basic amino acid excipients. Journal of Chemical Technology and Biotechnology, 86(7), 942–948. https://doi.org/10.1002/jctb.2657


Рецензия

Для цитирования:


Kotenkova Е.A., Polishchuk E.K. Technological approaches to the extraction and purification by ultrafiltration techniques of target protein molecules from animal tissues: a review. Теория и практика переработки мяса. 2022;7(2):76-82. https://doi.org/10.21323/2414-438X-2022-7-2-76-82

For citation:


Kotenkova E.A., Polishchuk E.K. Technological approaches to the extraction and purification by ultrafiltration techniques of target protein molecules from animal tissues: a review. Theory and practice of meat processing. 2022;7(2):76-82. https://doi.org/10.21323/2414-438X-2022-7-2-76-82

Просмотров: 701


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)