Preview

Theory and practice of meat processing

Advanced search

Biologically active peptides of meat and meat product proteins: a review. Part 2. Functionality of meat bioactive peptides

https://doi.org/10.21323/2414-438X-2020-5-2-12-19

Abstract

Biologically active peptides (BAP) are regarded as the main products of protein hydrolysis. BAP activity depends on the amino acid sequence molecular weight and chain length, type and charge of an amino acid at the N-terminus and C-terminus, hydrophobic and hydrophilic properties, spatial structure. They positively influence many systems of the human body, including the blood circulatory, nervous, immune, gastrointestinal and other systems. The health-improving effect of bioactive peptides is formed due to their antioxidant, antihypertensive, antithrombotic, immunomodulatory, antimicrobial, anti-allergic, opioid, anti-inflammatory, hypocholesterolemic and anticancer properties. Angiotensin-I-converting enzyme (ACE) inhibitory peptides are most studied due to their effect on blood pressure regulation. Unlike synthetic preparations, biologically active peptides do not have side effects and, therefore, can be used as their alternative. There is a growing commercial interest in peptides generated from meat proteins is in the context of health saving functional foods. The paper describes prospects, pros and cons of using bioactive peptides as functional food ingredients and biologically active food additives.

About the Authors

I. M. Chernukha
V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences
Russian Federation

Irina M. Chernukha —  doctor of technical sciences, professor, Academician of Russian Academy of Sciences, principal research scientist, Experimental clinic-laboratory «Biologically active substances of animal origin»

109316, Moscow, Talalikhina str., 26. 



N. G. Mashentseva
Moscow State University of Food Production
Russian Federation

Natal’ya G. Mashentseva —  doctor of technical sciences, professor RAS, head of the Department of Biotechnology and Technology of Products of Bioorganic Synthesis

125080, Moscow, Volokolamskoe sh., 11



D. A. Afanasev
Moscow State University of Food Production
Russian Federation

Dmitrii A. Afanas’ev —  student, Institute of Innovative Technologies and Bioindustry of Food Products

125080, Moscow, Volokolamskoe sh., 11



N. L. Vostrikova
V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences
Russian Federation

Natal’ya L. Vostrikova —  doctor of technical sciences, head of laboratory «Center for food and feed testing»

109316, Moscow, Talalikhina str., 26



References

1. Hayes, M., Stanton, C., Fitzgerald, G.F., Ross, R.P. (2007). Putting microbes to work: dairy fermentation, cell factories and bioactive peptides. Part II: Bioactive peptide functions. Biotechnology Journal, 2(4), 435–449. https://doi.org/10.1002/ biot.200700045

2. Korhonen, H. (2009). Milk-derived bioactive peptides: From science to applications. Journal of Functional Foods, 1(2), 177– 187. https://doi.org/10.1016/j.jff.2009.01.007

3. Korhonen, H., Pihlanto, A. (2006). Bioactive peptides: production and functionality. International Dairy Journal, 16(9), 945– 960. https://doi.org/10.1016/j.idairyj.2005.10.012

4. Ferranti, P., Nitride, Ch., Nicolai, M. A., Mamone, G., Picariello, G., Bordoni, A., Valli, V., Nunzio, M.D., Babini, E., Marcolini, E., Capozzi, F. (2014). In vitro digestion of Bresaola proteins and release of potential bioactive peptides. Food Research International, 63, 157–169. https://doi.org/10.1016/j.foodres.2014.02.008

5. Kitts, D., Weiler, K. (2003). Bioactive Proteins and Peptides from Food Sources. Applications of Bioprocesses used in Isolation and Recovery. Current Pharmaceutical Design, 9(16), 1309– 1323. https://doi.org/10.2174/1381612033454883

6. Chernukha, I.M., Mashentseva, N.G., Afanasyev, D.A., Vostrikova, N.L. (2019). Biologically active peptides of meat proteins and meat products: review. Part 1. General information about biologically active peptides of meat and meat products. Theory and practice of meat processing, 4(4), 12–16. https://doi. org/10.21323/2414–438X-2019–4–4–12–16

7. Li, Y., Yu, J. (2014). Research progress in structure-activity relationship of bioactive peptides. Journal of Medical Food, 18(2), 147–156. https://doi.org/10.1089/jmf.2014.0028

8. Chernukha, I.M., Mashentseva, N.G., Vostrikova, N.L., Kovalev, L.I., Kovaleva, M.A., Afanasev, D.A., Bazhaev, A.A. (2018). Generation of bioactive peptides in meat raw materials exposed to proteases of different origin. Sel’skokhozyaistvennaya biologiya, 53(6), 1247–1261. DOI: 10.15389/agrobiology.2018.6.1247rus (In Russian)

9. Ahmed, A.M., Mugurama, M. (2010). A review of meat protein hydroly sates and hypertension. Meat Science, 86(1), 110–118. https://doi.org/10.1016/j.meatsci.2010.04.032

10. Albenzio, M., Santillo, A., Caroprese, M., Della Malva, A, Marino, R. (2017). Bioactive Peptides in Animal Food Products. Foods, 6(5), E35. https://doi.org/10.3390/foods6050035

11. Mora, L., Gallego M., Toldra F. (2018). ACEI–Inhibitory peptides naturally generated in meat and meat products and their health relevance. Review. Nutrients, 10(9), 1259. https://doi. org/10.3390/nu10091259

12. Sánchez, A., Vázquez, A. (2017). Bioactive peptides: A review. Food Quality and Safety, 1(1), 29–46. https://doi.org/10.1093/ fqs/fyx006

13. Katayama, K., Anggraeni, H.E., Mori, T., Ahhmed, A.M., Kawahara, S., Sugiyama, M., Nakayama, T., Maruyama, M., Muguruma, M. (2008). Porcine skeletal muscle troponin is a good source of peptides with angiotensin-I converting enzyme inhibitory activity and antihypertensive effects in spontaneously hypertensive rats. Journal of Agricultural and Food Chemistry, 56(2), 355–360. https://doi.org/10.1021/jf071408j

14. Katayama, K., Tomatsu, M., Fuchu, H., Sugiyama, M., Kawahara, S., Yamauchi, K., Kawamura, Y., Muguruma, M. (2003). Purification and characterization of an angiotensin I-converting enzyme inhibitory peptide derived from porcine troponin C. Animal Science Journal, 74(1), 53–58. https://doi.org/10.1046/j.1344– 3941.2003.00086.x

15. Escudero, E., Toldrá, F., Sentandreu, M.A., Nishimura, H., Arihara, K. (2012). Anti-hypertensive activity of peptides identified in the in vitro gastrointestinal digest of pork meat. Meat Science, 91(3), 382–384. https://doi.org/10.1016/j.meatsci.2012.02.007

16. Arihara, K., Nakashima, Y., Mukai, T., Ishikawa, S., Itoh, M. (2001). Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins. Meat Science, 57(3), 319–324. https://doi.org/10.1016/ s0309–1740(00)00108-x

17. Gómez-Guillén, M.C., Giménez, B., López-Caballero, M.E., Montero, M.P. (2011). Functional and bioactive properties of collagen and gelatin from alternative sources: A review. Food Hydrocolloids, 25(8), 1813–1827. https://doi.org/10.1016/j.foodhyd.2011.02.007

18. Banerjee, P., Shanthi, C. (2012). Isolation of novel bioactive regions from bovine Achilles tendon collagen having angiotensin I-converting enzyme-inhibitory properties. Process Biochemistry, 47(12), 2335–2346. https://doi.org/10.1016/j. procbio.2012.09.012

19. Fu, Yu., Young, J.F., Therkildsen, M. (2017). Bioactive peptides in beef: Endogenous generation through postmortem aging. Meat Science, 123, 134–142. https://doi.org/10.1016/j.meatsci.2016.09.015

20. Fu, Yu., Young, J.F., Dalsgaard, T.K., Therkildsen, M. (2015). Separa tion of angiotensin I-converting enzyme inhibitory peptides from bovine connective tissue and their stability towards temperature, pH and digestive enzymes. International Journal of Food Science & Technology, 50(5), 1234–1243. https://doi. org/10.1111/ijfs.12771

21. Saiga, A., Iwai, K., Hayakawa, T., Takahata, Y., Kitamura, S., Nishi mura, T., Morimatsu, F. (2008). Angiotensin I-converting enzyme-inhibitory peptides obtained from chicken collagen hydrolysate. Journal of Agricultural and Food Chemistry, 56(20), 9586–9591.

22. Bezerra, T.K.A., Gomes de Lacerda, J.T.J., Salu, B.R., Oliva, M.L.V., Juliano, M.A., Pacheco, M.T.B., Madruga, M.S. (2019). Identification of Angiotensin I–Converting Enzyme-Inhibitory and Anticoagulant Peptides from Enzymatic Hydrolysates of Chicken Combs and Wattles. Journal of Medicinal Food, 22912), 1294– 1300. https://doi.org/10.1089/jmf.2019.0066

23. Yu, Y., Hu, J., Miyaguchi, Yu., Bai, X., Du, Yu., Lin, B. (2006). Isolation and characterization of angiotensin I-converting enzyme inhibitory peptides derived from porcine hemoglobin. Peptides, 27(11), 2950–2956. https://doi.org/10.1016/j.peptides.2006.05.025

24. Zheleznyak, E.V., Khripach, L.V., Knyazeva, T.D., Koganova, Z.I., Zykova, I.E., Grishin, D.A., Revazova, T.L. (2017). DPPH test application the for evaluation of the antioxidant serum activity in field environmental study. Hygiene and sanitation, 96(10), 982–986. https://doi.org/10.18821/0016–9900–2017–96– 10–982–986

25. Ames, B. (1983). Dietary carcinogens and anticarcinogens. Oxygen radicals and degenerative diseases. Science, 221(4617), 1256–1264. https://doi.org/10.1126/science.6351251

26. Wu, H.C., Sun, B.S., Chang, C.L., Shiau, C.Y. (2005). Lowmolecular-weight peptides as related to antioxidant properties of chicken essence. Journal of Food and Drug Analysis, 13(2), 176–183.

27. Kim, E.K., Lee, S.J., Jeon, B.T., Moon, S.H., Kim, B., Park, T.K., Han, J.S., Park P. J. (2009). Purification and characterisation of antioxidative peptides from enzymatic hydrolysates of venison protein. Food Chemistry, 114(4), 1365–1370. https://doi. org/10.1016/j.foodchem.2008.11.035

28. Young, J.F., Therkildsen, M., Ekstrand, B., Che, B.N., Larsen, M.K., Oksbjerg, N., Stagsted, J. (2013). Novel aspects of health promoting compounds in meat. Meat Science, 95(4), 904–911. https://doi.org/10.1016/j.meatsci.2013.04.036

29. Baltić, M., Boskovic, M., Ivanovic, J., Janjic, J., Dokmanovic, M., Marković, R., Baltić, T. (2014). Bioactive peptides from meat and their influence on human health. Tehnologija Mesa, 55, 8–21. https://doi.org/10.5937/tehmesa1401008b

30. Saiga, A., Tanabe, S., Nishimura, T. (2003). Antioxidant activity of peptides obtained from porcine myofibrillar proteins by protease treatment. Journal of Agricultural and Food Chemistry, 51(12), 3661–3667. https://doi.org/10.1021/jf021156g

31. Arihara, K., Ohata, M. (2006). Functional Properties of Bioactive Peptides Derived from meat Proteins. Сhapter 10 in the book «In Advanced Technologies for Meat Processing». Toldra, F., Ed.; Springer: New York, NY, USA, 245–274. https://doi. org/10.1201/9781420017311

32. Li, B., Chen, F., Wang, X., Ji, B., Wu, Y. (2007). Isolation and identification of antioxidative peptides from porcine collagen hydrolysate by consecutive chromatography and electrospray ionization-mass spectrometry. Food Chemistry, 102(4), 1135–1143. https://doi.org/10.1016/j.foodchem.2006.07.002

33. Escudero, E., Mora, L., Fraser, P.D., Aristoy, M.C., Toldrá, F. (2003). Identification of novel antioxidant peptides generated in Spanish dry-cured ham. Food Chemistry, 138(2–3), 1282–1288. https://doi.org/10.1016/j.foodchem.2012.10.133

34. Broncano, J.M., Otte, J., Petrón, M.J., Parra, V., Timón, M.L. (2012). Isolation and identification of low molecular weight antioxidant compounds from fermented «chorizo» sausages. Meat Science, 90(2), 494–501. https://doi.org/10.1016/j.meatsci.2011.09.015

35. Xing, L., Hu, Y., Hu, H., Ge, Q., Zhou, G., Zhang, W. (2016). Purification and identification of antioxidative peptides from dry cured Xuanwei ham. Food Chemistry, 194, 951–958. https://doi. org/10.1016/j.foodchem.2015.08.101

36. Iwaniak, A., Minkiewicz, P. (2007). Proteins as the source of physiolo gyically and functionally active peptides. Acta Scientiarum Polonorum, Technologia Alimentaria, 6(3), 5–15.

37. Luzak, B., Golanski, J., Rozalski, M., Boncler, M.A., Watala, C. (2003). Inhibition of collagen-induced platelet reactivity by DGEA peptide. Acta Biochimica Polonica, 50(4), 1119–1128. https://doi.org/10.18388/abp.2003_3636

38. Morimatsu, F., Ito, M., Budijanto, S., Watanabe, I., Furukawa, Y., Kimura, S. (1996). Plasma Cholesterol-Suppressing Effect of Papain-Hydrolyzed Pork Meat in Rats Fed Hypercholesterolemic Diet. Journal of Nutritional Science and Vitaminology, 42(2), 145– 153. https://doi.org/10.3177/jnsv.42.145

39. Shimizu, M., Sawashita, N., Morimatsu, F., Ichikawa, J., Taguchi, Y., Ijri, Y., Yamamoto, J. (2009). Antithrombotic papain-hydrolyzed peptides isolated from pork meat. Thrombosis research, 123(5), 753–757. https://doi.org/10.1016/j.thromres.2008.07.005

40. González-Ortega, O., López-Limón, A.R., Morales-Domínguez, J.F., Soria-Guerra, R.E. (2015). Production and purification of recombinant hypocholesterolemic peptides. Biotechnology Letters, 37(1), 41–54. https://doi.org/10.1007/s10529–014–1657–4

41. Nagaoka, S., Futamura, Y., Miwa, K., Awano, T., Yamauchi, K., Kanamaru, Y., Tadashi, K., Kuwata, T. (2001). Identification of novel hypocholesterolemic peptides derived from bovine milk β-lactoglobulin. Biochemical and Biophysical Research Communications, 281(1), 11–17. https://doi.org/10.1006/bbrc.2001.4298

42. Sayeed, M.B., Karim, M.R., Sharmin, T., Morshed, M. (2016). Critical Analysis on Characterization, Systemic Effect, and Therapeutic Potential of Beta-Sitosterol: A Plant-Derived Orphan Phytosterol. Medicine, 3(4), 29. https://doi.org/10.3390/medicines3040029

43. Chernukha, I. M., Mashentseva, N. G., Afanasiev, D. A., Laptev, G. U., Ilina, L. A. (2019). Effect of cholesterol-lowering starter cultures in smoked sausages on the formation of bioactive peptides and lipid profile in triton-induced hyperlipidemic rats. IOP Conference Series: Earth and Environmental Science, 333, 012049. https://doi.org/10.1088/1755–1315/333/1/012049

44. Damodharan, K., Palaniyandi, S.A., Yang, S.H., Suh, J.W. (2016). Functional Probiotic Characterization and In Vivo Cholesterol-Lowering Activity of Lactobacillus helveticus Isolated from Fermented Cow Milk. Journal of Microbiology and Biotechnology 26(10), 1675–1686. https://doi.org/10.4014/jmb.1603.03005

45. Takemura, N., Okubo, T., Sonoyama, K. (2010). Lactobacillus plantarum strain No. 14 reduces adipocyte size in mice fed highfat diet. Experimental biology and medicine, 235(7), 849–856. https://doi.org/10.1258/ebm.2010.009377

46. Udenigwe, C.C., Aluko, R.E. (2012). Food Protein-Derived Bioactive Peptides: Production, Processing, and Potential Health Benefits. Journal of Food Science, 77(1), 11–24. https://doi. org/10.1111/j.1750–3841.2011.02455.x

47. Jang, A., Jo, C., Kang, K.S., Lee, M. (2008). Antimicrobial and human cancer cell cytotoxic effect of synthetic angiotensin-converting enzyme (ACE) inhibitory peptides. Food Chemistry, 107(1), 327–336. https://doi.org/10.1016/j.foodchem.2007.08.036

48. Yu, L., Yang, L., An, W., Su, X. (2014). Anticancer bioactive peptide-3 inhibits human gastric cancer growth by suppressing gastric cancer stem cells. Journal of Cellular Biochemistry, 115(4), 697–711. https://doi.org/10.1002/jcb.24711

49. Rydlo, T, Miltz, J, Mor, A. (2006). Eukaryotic antimicrobial peptides: promises and premises in food safety. Journal of Food Science, 71(9), R125-R135. https://doi.org/10.1111/j.1750– 3841.2006.00175.x

50. Nagao, J.I., Asaduzzaman, S.M., Aso, Y., Okuda, K.I., Nakayama, J., Sonomoto, K. (2006). Lantibiotics: insight and foresight for new paradigm. Journal of Bioscience and Bioengineering, 102(3), 139–149. https://doi.org/10.1263/jbb.102.139

51. Adje, E.Y., Balti, R., Kouach, M., Guillochon, D., Nedjar-Arroume, N. (2011). α 67–106 of bovine hemoglobin: a new family of antimicrobial and angiotensin I-converting enzyme inhibitory peptides. European Food Research and Technology, 232(4), 637– 646. https://doi.org/10.1007/s00217–011–1430-z

52. Daoud, R., Dubois, V., Bors-Dodita, L., Nedjar-Arroume, N., Krier, F., Chihib, N. E., Marya, P., Kouach, M., Briand, G., Guillochon, D. (2005). New antibacterial peptide derived from bovine hemoglobin. Peptides, 26(5), 713–719. https://doi.org/10.1016/j. peptides.2004.12.008

53. Catiau, L., Traisnel, J., Delval-Dubois, V., Chihib, N.E., Guillochon, D., Nedjar-Arroume, N. (2011). Minimal antimicrobial peptidic sequence from hemoglobin alpha-chain: KYR. Peptides, 32(4), 633–638. https://doi.org/10.1016/j.peptides.2010.12.016

54. Tomé, D., Pichon, D., Benjamin, L., Guesdon, G. (2005). Opioid Peptides. Book Chapter in Nutraceutical Proteins and Peptides in Health and Disease, 1, 367. https://doi. org/10.1201/9781420028836.sec4

55. Marinova, Z., Vukojevic, V., Surcheva, S., Yakovleva, T., Cebers, G., Pasikova, N., Usynin, I., Hugonin, L., Fang, W., Hallberg, M., Hirschberg, D., Bergman, T., Langel, U., Hauser, K.F., Pramanik, A., Aldrich, J.V., Gräslund, A., Terenius, L., Bakalkin, P. (2005). Translocation of dynorphin neuropeptides across the plasma membrane. A putative mechanism of signal transmission. The Journal of Biological Chemistry, 280(28), 26360–26370. https://doi.org/10.1074/jbc.m412494200

56. Han, J.S., Xie, C.W. (1982). Dynorphin: potent analgesic effect in spinal cord of the rat. Life sciences, 31(16–17), 1781–1784. https://doi.org/10.1016/0024–3205(82)90209–0

57. Przewlocki, R. (2015). Opioid Peptides. Book Chapter in Neurosci ence in the 21st Century. New York: Springer. 1–28 p. https://doi.org/10.1007/978–1–4614–6434–1_54–3

58. Garg, S., Nurgali, K., Mishra, V.K. (2016). Food Proteins as Source of Opioid Peptides-A Review. Current Medicinal Chemistry, 23(9), 893–910. https://doi.org/10.2174/0929867323666 160219115226

59. Sapio, M.R., Iadarola, M.J., Loydpierson, A.J., Kim, J.J., Thierry-Mieg, D., Thierry-Mieg, J., Maric, D., Mannes, A.J. (2020). Dynorphin and Enkephalin Opioid Peptides and Transcripts in Spinal Cord and Dorsal Root Ganglion During Peripheral Inflammatory Hyperalgesia and Allodynia. The Journal of pain, https://doi. org/10.1016/j.jpain.2020.01.001

60. Fernández-Tomé, S., Martínez-Maqueda, D., Girón, R., Goicoechea, C., Miralles, B., Recio, I. (2016). Novel peptides derived from αs1-casein with opioid activity and mucin stimulatory effect on HT29-MTX cells. Journal of Functional Foods, 25, 466–476. https://doi.org/10.1016/j.jff.2016.06.023

61. Lister, J., Fletcher, P.J., Nobrega, J.N., Remington, G. (2015). Behavioral effects of food-derived opioid-like peptides in rodents: Implications for schizophrenia? Pharmacology Biochemistry and Behavior, 134, 70–78. https://doi.org/10.1016/j. pbb.2015.01.020

62. Hernández-Ledesma, B., del Mar Contreras, M., Recio, I. (2011). Antihy pertensive peptides: Production, bioavailability and incorporation into foods. Advances in colloid and interface science, 165(1), 23–35. https://doi.org/10.1016/j. cis.2010.11.001

63. Vermeirssen, V., Camp, J. V., Verstraete, W. (2004). Bioavailability of angiotensin I converting enzyme inhibitory peptides. British Journal of Nutrition, 92(3), 357–366. https://doi. org/10.1079/bjn20041189

64. Ryan, J.T., Ross, R.P., Bolton, D., Fitzgerald, G.F., Stanton, C. (2011). Bioactive peptides from muscle sources: Meat and fish. Nutrients, 3(9), 765–791. https://doi.org/10.3390/nu3090765

65. Segura-Campos, M., Chel-Guerrero, L., Batancur-Ancona, D., Hernandez-Escalante, V.M. (2011). Bioavailability of bioactive peptides. Food Reviews International, 27(3), 213–226. https://doi.org/10.1080/87559129.2011.563395

66. Ohara, H., Matsumoto, H., Itoh, K., Iwai, K., Sato, K. (2007). Comparison of Quantity and Structures of Hydroxyproline-Containing Peptides in Human Blood after Oral Ingestion of Gelatin Hydrolysates from Different Sources. Journal of Agricultural and Food Chemistry, 55(4), 1532–1535. https://doi.org/10.1021/ jf062834s

67. Fu, Y., Young, J.F., Rasmussen, M.K., Dalsgaard, T.K., Lametsch, R., Aluko, R.E., Therkildsen, M. (2016). Angiotensin I-converting enzyme–inhibitory peptides from bovine collagen: insights into inhibitory mechanism and transepithelial transport. Food Research International, 89, 373–381. https://doi. org/10.1016/j.foodres.2016.08.037

68. Gallego, M., Grootaert, C., Mora, L., Aristoy, M.C., Camp, J. V., Toldrá, F. (2016). Transepithelial transport of dry, cured ham peptides with ACE inhibitory activity through a Caco-2 cell monolayer. Journal of Functional Foods, 21, 388–395. https://doi. org/10.1016/j.jff.2015.11.046

69. Sangsawad, P., Choowongkomon, K., Kitts, D.D., Chen, X.M., Li-Chan, E.C.Y., Yongsawatdigul, J. (2018). Transepithelial transport and structural changes of chicken angiotensin I-convertin Genzyme (ACE) inhibitory peptides through Caco-2 cell monolayers. Journal of Functional Foods, 45, 401–408. https://doi. org/10.1016/j.jff.2018.04.020

70. Shimizu, K., Sato, M., Zhang, Y., Kouguchi, T., Takahata, Y., Morimatsu, F., Shimizu, M. (2010). The Bioavailable Octapeptide Gly-Ala-Hyp-Gly-Leu-Hyp-Gly-Pro Stimulates Nitric Oxide Synthesis in Vascular Endothelial Cells. Journal of Agricultural and Food Chemistry, 58(11), 6960–6965. https://doi.org/10.1021/ jf100388w

71. Shen, W., Matsui, T. (2017). Current knowledge of intestinal absorption of bioactive peptides. Food & function, 8(12), 4306– 4314. https://doi.org/10.1039/c7fo01185g

72. Udenigwe, C.C., Fogliano, V. (2017). Food matrix interaction and bioavailability of bioactive peptides: Two faces of the same coin? Journal of Functional Foods, 35, 9–12. https://doi. org/10.1016/j.jff.2017.05.029

73. Hartmann, R., Meisel, H. (2007). Food-derived peptides with biological activity: From research of old applications. Current Opinion in Biotechnology, 18(2), 163–169. https://doi. org/10.1016/j.copbio.2007.01.013


Review

For citations:


Chernukha I.M., Mashentseva N.G., Afanasev D.A., Vostrikova N.L. Biologically active peptides of meat and meat product proteins: a review. Part 2. Functionality of meat bioactive peptides. Theory and practice of meat processing. 2020;5(2):12-19. https://doi.org/10.21323/2414-438X-2020-5-2-12-19

Views: 1337


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)