Preview

Theory and practice of meat processing

Advanced search

MYOPATHY AS A DESTABILIZING FACTOR OF MEAT QUALITY FORMATION

https://doi.org/10.21323/2414-438X-2019-4-3-24-31

Full Text:

Abstract

This review paper is devoted to myopathy of slaughter animals and poultry, and examines a relationship between fast growth of muscle tissue in hybrid pigs, broiler chickens and turkey, and high frequency of detection of spontaneous or idiopathic myopathies. The development of myopathy reduces consumer and technological properties of meat, and leads to emergence of different pathological conditions (PSE or RSE meat, «destructured meat», «white» or «green» meat, punctate hemorrhage, «wooden breast» and others). Two types of myopathic conditions are examined: myopathies caused by stress in animals and nutritional myopathies, which contribution to meat quality deterioration seems to be determinative. It is shown that the basis of the mechanism of the myopathy development is the mechanism of the successive changes in muscle tissue: damage of cell membranes and release of mitochondrial calcium, which causes hypercontraction, dystrophic changes, atrophy and necrosis of muscle fibers. To alleviate the damaging effect of two types of myopathies, different substances-adaptogens (selenium, vitamin E, flavonoids and others) can be used. It is stated that the requirements of animals in adaptogens change with an increase in the indicators of their productivity.

About the Authors

Anastasiia A. Semenova
V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences
Russian Federation

Doctor of technical sciences, professor, deputy director

109316, Moscow, Talalikhina str., 26. Tel.: +7–495–676–61–61.



Tatiana G. Kuznetsova
V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences
Russian Federation

Doctor of veterinary sciences, professor, leading research scientist, Department of Scientific and applied and technological developments

109316, Moscow, Talalikhina str., 26. Теl. +7–495–676–99–91.



Victoria V. Nasonova
V.M. Gorbatov Federal Research Center for Food Systems of the Russian Academy of Sciences
Russian Federation

Candidate of technical sciences, chef of department, Department of Scientific and applied and technological developments

109316, Moscow, Talalikhina str., 26. Tel.: +7–495–676–65–51.



Roman V. Nekrasov
L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Doctor of agricultural sciences, professor RAS, chief of department, Department of feeding of farm animals

142132, Moscow Region, Podolsk, Dubrovitsy 60. Теl. +7–496–765–12–77.



Nadezhda V. Bogolyubova
L.K. Ernst Federal Science Center for Animal Husbandry
Russian Federation

Candidate of biological sciences, chief of department, Department of physiology and biochemistry of farm animals

142132, Moscow Region, Podolsk, Dubrovitsy 60.Теl. +7–496–765–11–69.



References

1. Petracci, M., Cavani, C. (2012). Muscle Growth and Poultry Meat Quality Issues. Nutrients, 4(1), 1–12. DOI: 10.3390/nu4010001

2. Listrat, A., Lebret, B., Louveau, I., Astruc, T., Bonnet, M., Lefaucheur, L., Bugeon, J. (2015). Comment la structure et la composition du muscle déterminent la qualité des viands ou chairs?, INRA Productions Animales, 28(2), 125–136. (in French)

3. Cooper, B.J., Valentine, B.A. (2015). Muscle and Tendon. Chapter 3 in the Book: Pathology of Domestic Animals: Volume 1 (Sixth Edition). Elsevier Health Sciences. 64–259 pp. DOI: 10.1016/B978–0–7020–5317–7.00003–5

4. Valentine, B. A. (2017). Skeletal Muscle. Chapter 15 in the Book: Pathologic Basis of Veterinary Disease. Elsevier Health Sciences. 908–953 pp. ISBN 978–0–323–0287–7

5. Herráez, P., Espinosa de los Monteros, A., Fernández, A., Edwards, J.F, Sacchini, S., Sierra, E. (2013). Capture myopathy in live-stranded cetaceans. The Veterinary Journal, 196(2), 181–188. DOI: 10.1016/j.tvjl.2012.09.021

6. Wight, P.A.L., Siller, W.G., Martindale, L. (1981). Animal model of human disease. March gangrene. Deep pectoral myopathy, Oregon disease, green muscle disease. American Journal of Pathology, 103(1), 159–161.

7. Sheng, X., Wang, L., Ni, H., Wang, L., Qi, X., Xing, S., Guo, Y. (2016). Comparative Analyses between Skeletal Muscle miRNAomes from Large White and Min Pigs Revealed MicroRNAs Associated with Postnatal Muscle Hypertrophy. PLoS ONE, 11(6), e0156780. DOI: 10.1371/journal.pone.0156780

8. Crociara, P., Chieppa, M.N., Vallino Costassa, E., Berrone, E., Gallo, M., Lo Faro, M., Pintore, M.D., Iulini, B., D’Angelo, A., and al. (2019). Motor neuron degeneration, severe myopathy and TDP-43 increase in a transgenic pig model of SOD1-linked familiar ALS. Neurobiology of Disease, 124, 263–275. DOI: 10.1016/j.nbd.2018.11.021

9. Kijowski, J., Konstanczak, M. (2009). Deep pectoral myopathy in broiler chickens. Bulletin of the Veterinary Institute in Pulawy, 53(3), 487–491.

10. Lee, S.H., Choe, J.H., Choi, Y.M., Jung, K.C., Rhee, M.S., Hong, K.C., Lee, S.K, Ryu, Y.C., Kim, B.C. (2012). The influence of pork quality traits and muscle fiber characteristics on the eating quality of pork from various breeds. Meat Science, 90(2), 284–291. DOI: 10.1016/j.meatsci.2011.07.012

11. Kim, J.-M., Lim, K.-S., Ko, K.-B., Ryu, Y.-C. (2018). Estimation of pork quality in live pigs using biopsied muscle fibre number composition. Meat Science, 137,130–133. DOI: 10.1016/j.meatsci.2017.11.020

12. Realini, C.E., Vénien, A., Gou, P., Gatellier, P., Pérez-Juan, M, Danon, J., Astruc, T. (2013). Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 1. Microscopic analysis of muscles. Meat Science, 94(3), 408–416. DOI: 10.1016/j.meatsci.2013.03.009

13. Realini, C.E., Pérez-Juan, M., Gou, P., Díaz, I., Sárraga, C.,, Gatellier, P., García-Regueiro, J.A. (2013). Characterization of Longissimus thoracis, Semitendinosus and Masseter muscles and relationships with technological quality in pigs. 2. Composition of muscles. Meat Science,94 (3),417–423. DOI: 10.1016/j.meatsci.2013.03.007

14. Lefaucheur, L., Hoffman, R.K., Gerrard, D.E., Okamura, C.S., Rubinstein, N., Kelly, A. (1998). Evidence for three adult fast myosin heavychain isoforms in type II skeletal muscle fibersin pigs. Journal of animal science, 76, 1584–1593.

15. Sales, J., Kotrba, R. (2013). Meat from wild boar (Sus scrofa L.): A review. Meat Science, 94(2), 187–201. DOI: 10.1016/j.meatsci.2013.01.012

16. Bonnet M., Louveau, I., Picard, B., Gondret, F., Lefaucheur, L., Chilliard, Y., Cassar-Malek, I. (2010). L’adiposité des carcasses et des viandesà la lumière des interactions tissus adipeux-muscles au cours de la croissance. Viandes Prod.Carnés, Hors série, 193–200. (in French)

17. Lefaucheur, L. (2010). A second look into fibre typing — Relation to meat quality. Meat Science, 84(2), 257–270. DOI: 10.1016/j.meatsci.2009.05.004

18. Schubert-Schoppmeyer, A., Fiedler, I., Nürnberg, G., Jonas, L., Ender, K, Maak, S., Rehfeldt, C. (2008). Simulation of giant fibre development in biopsy samples from pig longissimus muscle. Meat Science, 80(4), 1297–1303. DOI: 10.1016/j.meatsci.2008.06.008

19. Minvielle, B., Le Strat, P., Lebret, B., Houix, Y., Boulard, J., Clochefert, N. (2001). Viandes déstructurées: situation dans cinq abattoirs de l’Ouest de la France; facteurs de risqué et proposition d’un modèle; caractérisation colorimétrique, biochimique et histologique. Journées Recherche. Porcine en France, 33, 95–101. (in French)

20. Vautier, A. (2008). Quels paramètres mesurer pour prédire les viandes déstructurées? TechniPorc, 31(6), 41–42. (in French)

21. Aubry, A., Ligonesche, B., Guéblez, R., Gaudré, D. (2000). Comparaison de porcs charcutiers NN et Nn pour les performances de croissance, carcasse et qualité de viande, et l’aptitude à produire du jambon cuit. Journées Recherche. Porcine en France, 32, 361–367. (in French)

22. Minvielle, B., Houix, Y., Lebret, B., Boulard, J., Clochefert, N. (2005). Viandes déstructurées: plusieurs facteurs de risque sont mis enévidence. Viandes Prod. Carnés, 24(2), 63–68. (in French)

23. Bilgili, S.F, Hess, J.B. (2008). Green muscle disease: Reducing the incidence in broiler flocks. [Electronic resource: http://en.aviagen.com/assets/Tech_Center/AA_Technical_Articles/AAUpdateGreenMuscle.pdf Access date 23.07.2019]

24. Velleman, S.G. (2015). Relationship of Skeletal Muscle Development and Growth to Breast Muscle Myopathies: A Review. Avian Diseases, 59(4), 525–531. DOI: 10.1637/11223–063015-Review.1

25. Sihvo, H.-K., Lindén, J., Airas, N., Immonen, K, Valaja, J., Puolanne, E. (2017). Wooden breast myodegeneration of pectoralis major muscle over the growth period in broilers. Veterinary Pathology, 54(1), 119–128. DOI: 10.1177/0300985816658099

26. Dalle Zotte, A., Tasoniero, G., Puolanne, E., Remignon, H., Cecchinato, M, Catelli, E., Cullere, M. (2017). Effect of «Wooden Breast» appearance on poultry meat quality, histological traits, and lesions characterization. /Dalle Zotte, A., Tasoniero, G., Puolanne, E., Remignon, H., Cecchinato, M., Catelli, E., et al. Czech Journal of Animal Science, 62(2), 51–57. DOI: 10.17221/54/2016-CJAS

27. Sihvo, H.-K., Immonen, K., Puolanne, E. (2014). Myodegeneration with fibrosis and regeneration in the Pectoralis major muscle of broilers. Veterinary Pathology, 51(3), 619–623. DOI: 10.1177/0300985813497488

28. Tasoniero, G., Bertram, H.C., Young, J.F., Dalle Zotte, A., Puolanne, E. (2017). Relationship between hardness and myowater properties in Wooden Breast affected chicken meat: A nuclear magnetic resonance study. LWT — Food Science and Technology, 86, 20–24. DOI: 10.1016/j.lwt.2017.07.032

29. Jagla, K., Kalman, B., Boudou, T., Hénon, S., Batonnet-Pichon, S. (2017). Beyond mice: Emerging and transdisciplinary models for the study of early-onset myopathies. Seminars in Cell and Developmental Biology, 64, 171–180. DOI: 10.1016/j.semcdb.2016.09.012

30. Kucherenko, M.M., Marrone, A.K., Rishko, V.M., Magliarelli, H.D.F., Shcherbata, H.R. (2011). Stress and muscular dystrophy: A genetic screen for Dystroglycan and Dystrophin interactors in Drosophila identifies cellular stress response components. Developmental Biology, 352(2),228–242. DOI: 10.1016/j.ydbio.2011.01.013

31. Cassens R. G. (2000). Historical perspectives and current aspects of pork meat quality in the USA. Food Chemistry, 69(4), 357–363. DOI: 10.1016/S0308–8146(00)00048–0

32. Wendt, M., Bickhardt, K., Herzog, A., Fischer, A., Martens, H., Richter, T. (2000). Porcine stress syndrome and PSE meat: clinical symptoms, pathogenesis, etiology and animal rights aspects. Berliner und Münchener tierärztliche Wochenschrift,113(5), 173–90.

33. O’Neill, D.J., Lynch, P.B., Troy, D.J., Buckley, D.J., Kerry, J.P. (2003). Influence of the time of year on the incidence of PSE and DFD in Irish pigmeat. Meat Science, 64(2), 105–111. DOI: 10.1016/S0309–1740(02)00116-X

34. Veterinary medicine. [Electronic resource: https://veterinarua.ru/chastnaya-patologiya-nasledstvennykh-boleznej/892-stressovyj-sindrom-svinej.html. Access date 22.06.2019]

35. Martens, H. (1997). Physiology and physiopathology of ryanodine receptors in swine. Significance of sensitivity to stress, stress myopathies, malignant hyperthermia and meat quality. Tierärztliche Praxis, 25(1),41–51.

36. Jeremiah L. E., Gibson J. P., Gibson L. L., Ball R. O., Aker C., Fortin A. The influence of breed, gender, and PSS (halothane) genotype on meat quality, cooking loss, and palatability of pork. Food Research International, 32(1), 59–71. DOI: 10.1016/S0963–9969(99)00077–0

37. Cherel, P., Glénisson, J., Figwer, P., Pires, J., Damon, M, Franck, M., Le Roy, P. (2010). Updated estimates of HAL n and RN-effects on pork quality: Fresh and processed loin and ham. Meat Science, 86(4), 949–954. DOI: 10.1016/j.meatsci.2010.07.022

38. Barbut, S., Sosnicki, A.A., Lonergan, S.M., Knapp, T., Ciobanu, D.C., Gatcliffe, L., Huff-Lonergan, E., Wilson, E.W. (2008). Progress in reducing the pale, soft and exudative (PSE) problem in pork and poultry meat. Meat Science, 79(1), 46–63. DOI: 10.1016/j.meatsci.2007.07.031

39. Lesiów, T., Xiong, Y.L. (2013). A simple, reliable and reproductive method to obtain experimental pale, soft and exudative (PSE) pork. Meat Science, 93(3),489–494. DOI: 10.1016/j.meatsci.2012.11.022

40. Falk, M., Bernhoft, A., Framstad, T., Salbu, B., Wisløff, H., Kortner, T., Kristoffersen, A.B., Oropeza-Moe, M. (2018). Effects of dietary sodium selenite and organic selenium sources on immune and inflammatory responses and selenium deposition in growing pigs. Journal of Trace Elements in Medicine and Biology, 50, 527–536. DOI: 10.1016/j.jtemb.2018.03.003

41. Oropeza-Moe, M., Wisløff, H., Bernhoft, A. (2007). Selenium deficiency associated porcine and human cardiomyopathies Journal of Trace Elements in Medicine and Biology, 31, 148–56. DOI: 10.1016/j.jtemb.2014.09.011

42. Rice, D.A., Kennedy S. (1989). Vitamin E, selenium, and polyunsaturated fatty acid concentrations and glutathione peroxidase activity in tissues from pigs with dietetic microangiopathy (mulberry heart disease). American Journal of Veterinary Research, 50(12), 2101–2104.

43. W.J., Zhao, G.P., Chen, J.L., Zheng, M.Q., Wen, J. (2009). Influence of dietary vitamin E supplementation on meat quality traits and gene expression related to lipid metabolism in the Beijing-you chicken. British Poultry Science, 50(2), 188–98. DOI: 10.1080/00071660902755409

44. Stephens, J.W., Dikeman, M.E., Unruh, J.A., Haub, M.D., Tokach, M.D., Dritz, S.S. (2008). Effects of oral administration of sodium citrate or acetate to pigs on blood parameters, postmortem glycolysis, muscle pH decline, and quality attributes of pork. Journal of animal science, 86(7), 1669–1677. DOI: 10.2527/jas.2007–0797

45. Dalgaard, T.S., Briens, M., Engberg, R.M., Lauridsen, C. (2018). The influence of selenium and selenoproteins on immune responses of poultry and pigs. Animal Feed Science and Technology, 238, 73–83. DOI: 10.1016/j.anifeedsci.2018.01.020

46. Vignola, G., Lambertini, L., Mazzone, G., Giammarco, M., Tassinari, M., Martelli, G., Bertin, G. (2009). Effects of selenium source and level of supplementation on the performance and meat quality of lambs. Meat Science, 81(4), 678–685. DOI: 10.1016/j.meatsci.2008.11.009

47. Joo, S.T., Kim, G.D., Hwang, Y.H., Ryu, Y.C. (2013). Control of fresh meat quality through manipulation of muscle fiber characteristics. Meat Science, 95(4), 828–836. DOI: 10.1016/j.meatsci.2013.04.044


For citation:


Semenova A.A., Kuznetsova T.G., Nasonova V.V., Nekrasov R.V., Bogolyubova N.V. MYOPATHY AS A DESTABILIZING FACTOR OF MEAT QUALITY FORMATION. Theory and practice of meat processing. 2019;4(3):24-31. https://doi.org/10.21323/2414-438X-2019-4-3-24-31

Views: 236


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2414-438X (Print)
ISSN 2414-441X (Online)