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Introduction
A major challenge facing the food industry is the need 

to extend the shelf life of foods susceptible to oxidative 
spoilage. Oxidative spoilage is a complex process that de-
grades the sensory characteristics of products (including 
taste, aroma, and texture) and reduces nutritional value, 
which can negatively impact consumer health. Further-
more, toxic metabolites can accumulate during this pro-
cess, which also poses potential health risks. On an in-
dustrial scale, it is often simpler and more cost-effective 
to use synthetic preservatives and antioxidants, as these 
substances effectively slow oxidation processes and extend 
the shelf life of products. However, in light of increasing 
consumer demands for food quality and safety, manufac-
turers are increasingly forced to rethink their approaches 
and shift their focus to natural food additives [1,2]. Natural 
antioxidants, in particular, play a key role in slowing the 
rate of oxidative reactions, including lipid oxidation, which 
in turn leads to a reduction in hydrogen peroxide and free 
radical levels in foods  [3–5]. In recent years, active pep-
tides, which have high potential as natural antioxidants, 
have attracted particular attention from researchers [6,7].

These biologically active components not only help ex-
tend the shelf life and enhance the stability of food prod-
ucts, but also possess a number of additional beneficial 
properties. This makes them particularly attractive for use 
in diets and in industrial food processing settings [8,9].

However, obtaining pure active peptides requires com-
plex technological approaches to extraction and purifica-
tion, which significantly increases their final cost. At the 
same time, numerous studies confirm the antioxidant 
properties of protein hydrolysates containing antioxidant 
peptides obtained from various types of protein raw mate-
rials. Other advantages of protein hydrolysates compared 
to purified peptides have been noted, such as the formation 
of oligopeptides as a result of absorption [10,11]. In recent 
years, research on protein hydrolysates containing bioac-
tive peptides as functional and technological additives for 
food production has attracted the attention of food scien-
tists all over the world  [12,13]. Many studies corroborate 
the potential of using protein hydrolysates containing anti-
oxidant peptides as food preservatives. The effectiveness of 
protein hydrolysates in reducing fat oxidation in food sys-
tems has been experimentally proven. Studies of various 
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food products containing carp hydrolysates have shown 
reductions in free fatty acids, peroxide value, and malondi-
aldehyde levels, which generally contributes to improved 
shelf life of high-fat food systems [14,15].

Peptides have a lower molecular weight than proteins, 
and therefore are easily digestible and more bioavailable, 
and exhibit higher biological activity. Protein cleavage is car-
ried out due to hydrolysis caused by the action of catalysts 
(acids, alkalis or enzymes). As a result, the cleavage products 
of the protein molecule are sequentially formed — first poly-
peptides, peptides, and then amino acids [16].

Enzymatic protein hydrolysis is the most widely used 
process to produce bioactive peptides, which are impor-
tant components in a variety of fields, from medicine to the 
food industry [16–18].

This method offers a gentler and more environmentally 
friendly approach compared to traditional chemical pro-
cessing of protein raw materials. Unlike chemical methods, 
which often involve the use of toxic reagents and can have a 
negative impact on the environment, enzymatic hydrolysis 
utilizes natural enzymes, minimizing the risk of harming 
the ecosystem.

However, modern research points to the significant 
advantages and promising potential of microbial fermen-
tation, particularly using bacteria with a well-developed 
proteolytic system [19–21].

Certain microbial strains not only can effectively break 
down proteins into peptides but also have an additional 
impact on the quality of the final product. Microbial fer-
mentation can facilitate the formation of new bioactive 
peptides with unique functional properties and also in-
fluence the amino acid composition, which can improve 
the nutritional properties of the resulting product [22,23]. 
Microbial fermentation enables the precise engineering 
of peptides with targeted functions, including antimicro-
bial and antioxidant activity, by harnessing bacterial me-
tabolism. To fully realize this potential, further research is 
needed to refine the fermentation conditions.

Numerous studies highlight the significant potential 
of meat raw materials for producing protein hydrolysates 
and bioactive peptides, which can serve as functional com-
ponents in diets, contributing to improved health [24,25].

With the active participation of microbial endo- and 
exopeptidases, protein proteolysis occurs, leading to the 
release and accumulation of bioactive peptides in the sub-
strate. Under specific conditions, microbial fermentation 
produces significant quantities of short peptides and free 
amino acids, which have multiple beneficial effects on the 
body [26].

In this case, the activity of peptides as a whole depends 
on the sequence of amino acid residues, electronic prop-
erties and the degree of hydrophobicity. Scientific pub-
lications have noted a wider range of biological activity 
of protein hydrolysates obtained from several food pro-
teins  [27], as well as during the enzymatic processing of 
by-products [28].

Transforming animal and poultry by-products into 
protein hydrolysates offers a dual benefit: unlocking 
a high-value protein source and reducing agricultural 
waste. These products, often perceived as waste, actually 
contain significant amounts of amino acids and bioactive 
molecules, making them an important component in the 
development of new processing technologies and applica-
tions in the food and feed industries. Research shows that 
hydrolysates obtained from liver and heart exhibit not only 
high antioxidant activity but also pronounced antimicro-
bial activity [11]. This opens up new opportunities for their 
use as functional ingredients in various products, helping 
to extend shelf life and improve consumer safety. Activa-
tion of these hydrolysates can significantly improve the 
organoleptic and nutritional characteristics of final prod-
ucts, making them an important element in sustainable 
development strategies for the agricultural industry and 
processing  [14]. Therefore, the development of technolo-
gies aimed at the rational and efficient use of by-products 
obtained from farm animals and poultry is an important 
scientific task with practical significance.

This process takes into account the interests of both 
producers seeking to optimize their resources and re-
duce losses, and consumers interested in high-quality and 
healthy products [11,29].

Protein hydrolysates containing bioactive peptides ex-
hibit a diverse range of functional and physiological effects 
that impact both the human body and food systems. In 
terms of their effects on the human body, these hydroly-
sates exhibit a significant variety of properties, including 
immunomodulatory, anticancer, antihypertensive, antioxi-
dant, anti-inflammatory, mineral-binding, opioid, antilip-
id, anti-aging, and osteoprotective effects [16–18,24,26,28]. 
Each of these effects is based on specific mechanisms of 
interaction between bioactive peptides and cellular recep-
tors, enzymes, and other molecules in the body, allowing 
hydrolysates to be used as functional supplements for the 
prevention and treatment of various diseases.

The activity of protein hydrolysates in food systems is 
also worth noting. They exhibit antioxidant and antimi-
crobial properties, making them useful for improving food 
preservation and extending their shelf life.

Their antioxidant activity helps neutralize free radicals, 
which in turn prevents oxidative processes in food materi-
als, preventing their spoilage. Antimicrobial properties help 
combat pathogenic microflora, ensuring the safety and qual-
ity of food products. By virtue of their bioactive peptides, 
protein hydrolysates offer dual utility: they provide docu-
mented health benefits while enhancing functional proper-
ties, paving the way for their adoption in nutraceutical, phar-
maceutical, and next-generation food products [8,13,30,31].

The main goal of this study is to identify the antioxidant 
properties of protein hydrolysates obtained by microbial 
fermentation of broiler chicken stomachs with the addi-
tion of bifidobacteria and propionic acid bacteria concen-
trates in whey.
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Objects and methods

Objects
This study characterized protein hydrolysates (PH) de-

rived from gizzards of ROSS‑308 broiler chickens (41 days 
old) via microbial fermentation. Hydrolysis was conduct-
ed in a soft cheese whey medium under three conditions: 
with a concentrate of Bifidobacterium longum B379M 
(PH-B), with a concentrate of Propionibacterium freud-
enreichii shermanii KM 186 (PH-P), and a control with-
out bacterial addition (PH-C). The bacterial concentrates 
(Propionix, Moscow, Russia) had concentrations of viable 
bacterial cells of 1011–1012 CFU/cm³ (bifidobacteria) and 
1010–1011 CFU/cm³ (propionibacteria). Optimized fermen-
tation parameters presented in a previous study were used 
to obtain hydrolysates  [32]. The hydrolysate production 
technology is shown in Figure 1.

Determination of antioxidant activity  
of protein hydrolysate
The Ferric-reducing antioxidant power (FRAP) assay of 

hydrolysate samples was determined in ethanol extracts. 
In order to prepare sample extracts, a sample was mixed 
with 96 % ethanol in a ratio of 1 : 15 (g : ml), homogenized 
using an automatic homogenizer S10 (Stegler, China) for 
2 min at 8000 rpm, infused for 60 min at 22 ± 2 °C and fil-
tered through a paper pleated filter.

The total antioxidant capacity of alcohol extracts was 
determined by the FRAP method on an SF‑2000 spectro-
photometer (OKB Spektr, Russia) in accordance with the 
procedure  [33]. In order to prepare the FRAP reagent, 
0.3  M acetate buffer (pH  3.6), was mixed with 10 mM 
solution of the photometric reagent TPTZ (2,4,6-Tris(2-
pyridyl)-s-triazine) (Acros Organics, China), by dissolving 
it in 40 mM hydrochloric acid and 20 mM aqueous iron 
(III) chloride (PanReac AppliChem, Spain) in ratios of 
10 : 1 : 1, respectively. In order to measure the FRAP assay of 
the extract, 1.45 ml of freshly prepared FRAP reagent and 
50 µl of the sample diluted with distilled water depending 
on the activity, or distilled water for measuring the control 
sample, were added to the tube. The reaction mixture was 

incubated for 30 min at 37 °C in the dark, after which the 
optical density was recorded at a wavelength of 594 nm. 
The FRAP assay of the samples was calculated according to 
the calibration curve (R2 = 0.9987), which was constructed 
using quercetin (Sigma-Aldrich, India) in the concentra-
tion range of 140 μM — 300 μM, and expressed in μmol-
equiv. quercetin/g sample.

The DPPH radical scavenging activity (RSA) of the 
protein hydrolysates was determined according to  [34]. 
Briefly, 0.5 g of each sample was subjected to extraction in 
20 cm³ of 95 % ethanol for six hours at 20 °C. Subsequently, 
1 ml of the extract was combined with 1 cm³ of an ethanolic 
DPPH solution and left to react in the dark for 30 minutes. 
The absorbance of the resulting mixture was measured at 
517 nm using a Jenway 6404 UV/Vis spectrophotometer 
(Jenway, UK).

The radical scavenging efficiency (RSA) was calculated 
as a percentage using the formula:

	 RSA
A A

ADPPH
i k= −

−





⋅1 100
0

%,	 (1)

where: Ak is the value for test sample solution mixed with DPPH 
solution; Ai is the value for test sample solution mixed with 
95 % ethanol; A0 is the value for DPPH solution mixed with 
95 % ethanol.

The IC50 value was also determined. This indicator 
characterizes the concentration of the substance that binds 
50 % of the formed DPPH radicals. The IC50 value was de-
termined from a calibration plot of RSADPPH values (%) for 
various concentrations of protein hydrolysates (from 0 to 
0.05 mg/ml).

Determination of free amino acids  
in protein hydrolysates
Free amino acids were determined using liquid chro-

matography on an Agilent 1260 Infinity LC system (Agi-
lent Technologies, USA). Samples were prepared by liquid 
extraction of the hydrolysate in a 20 % trichloroacetic acid 
solution, and the resulting homogenate was then adjusted 
to pH 2.2 using acidified saline buffer. The mixture was then 
centrifuged BKC-TL4IV (Biobase, China) (20  minutes at 

1

grinding mixing homogenization fermentation microfiltration freeze drying

hole diameter
2–3 mm

whey t = 3±1°C
ratio 1:5

V = 28000 rpm
t = 1 min

t = 39±2°C
duration  9–12 h ᴓ pore 0.45 μm

condensing surface
t = –40±5°C

Figure 1. Technology flow chart for protein hydrolysate production (Created with BioRender.com)
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4 °C with an RCF of 10,000 × g), and the supernatant formed 
after centrifugation was filtered into a vial. Chromatograph-
ic separation was performed on a C18 PA column (3.5 μm, 
4.6 × 150 mm, ZORBAX) using a mixture of acetonitrile, 
methanol, and water in a ratio of 45 : 45 : 10 as mobile phase 
A and mobile phase B consisting of Na2HPO2 (1.42 g) and 
Na2B2O2 (2.1 g), with pH 8.2. Orthophthalaldehyde for pri-
mary amino acids and 9-fluoromethyl chloroformate for 
secondary amino acids were used as derivatizing agents. 
Amino acid standards from Sigma Aldrich were used.

The content of free amino acids was expressed as mil-
ligrams per 100 g of liquid hydrolysates.

UPLC-ESI-Q-TOF-MS analysis and sequencing 
of biopeptides
The peptide separation was conducted on an Agilent 

Technologies 1290 Infinity UHPLC system  [35,36], con-
figured with an AdvanceBio Peptide Mapping column 
(2.1 × 250 mm, 2.7 µm) and a ZORBAX Extend-C18 guard 
column. The mobile phases consisted of 0.1 % formic acid 
in H₂O (A) and acetonitrile (B), delivered at a flow rate of 
0.2 mL/min with a 10 µL injection volume. A 184-minute 
linear gradient was employed: 2 % B for 5 min, ramping to 
43 % B over 165 min, then to 100 % B over 1 min, holding 
at 100 % B for 6 min, and finally returning to 2 % B over 
7 min.

The UHPLC system was coupled to an Agilent 6545XT 
AdvanceBio LC/Q-TOF mass spectrometer equipped 
with a DuoJet Stream ESI source operating in positive 
ion mode. Key source parameters were: capillary volt-
age, 4000 V; nozzle voltage, 500 V; drying gas, 13 L/min at 
325 °C; and nebulizer pressure, 35 psi. The ion funnel set-
tings were 150 V (high-pressure) and 65 V (low-pressure). 
Data was acquired in full-scan MS (150–2100 m/z) and da-
ta-dependent MS/MS modes. The mass axis was calibrated 
internally using purine and HP0921. Nitrogen served as 
the collision gas.

Analytes were identified based on mass fragmentation 
using MSDIAL software (v.5.1) [36,37], applying mass ac-
curacies of 0.01 Da for MS1 and 0.05 Da for MS2, which 
yielded over 300 compounds from the aqueous and etha-
nolic hydrolysate extracts. Individual peptide quantifica-
tion was performed against a Leytragin® standard curve 
(1–1000 ng/mL) [38], with results expressed as mg Leytra-
gin equivalents per 100 g of hydrolysate.

Quantification of the major peptides was performed us-
ing Leytragin® calibration curves, with a regression coef-
ficient >0.990. The identified peptides were analyzed using 
the BioPep [39] and PeptideRanker [40] databases.

Statistical analysis
The experimental data were derived from five replicate 

samples, with each replicate subjected to three analytical 
measurements. The results are expressed as the mean value 
of the five replicates plus or minus the standard deviation. 
To assess statistical significance, the data were subjected to 
one-way ANOVA and Tukey’s honest significant difference 

(HSD) test, implemented via a publicly accessible web ap-
plication [41], using a significance threshold of p ≤ 0.05.

Results and discussion

Antioxidant activity of protein hydrolysate
When assessing the antioxidant activity of protein hy-

drolysates, the following methods are mainly used: DPPH• 
radical absorption and iron-reducing antioxidant capacity 
(FRAP).

Methods for determining the antioxidant activity of 
hydrolysates (peptides) based on electron transfer include 
the ability of antioxidants to reduce iron and the activity 
of scavenging DPPH radicals  [42]. FRAP analysis shows 
the reducing potential of antioxidant compounds through 
interaction with the ferric complex and tripyridyltriazine. 
According to Wong et al. [43], the antioxidant activity of 
peptides is mediated by functional groups  — including 
phenolic hydroxyl, sulfhydryl, and imidazole — which di-
rectly scavenge free radicals and chelate prooxidant metal 
ions, thereby terminating oxidative chain reactions.

The results presented in Table 1 showed that the antioxi-
dant activity of the FRAP hydrolysate sample obtained by 
fermentation with propionic acid bacteria was not statisti-
cally different from the control hydrolysate sample (PH-C). 
However, the level of antioxidant activity in the hydrolysate 
sample obtained by fermentation with bifidobacteria was 
approximately 30 % lower than that of the other samples.

The results show (Table 1) that the sample of the hydro-
lysate fermented with bifidobacteria at a concentration of 
1.363 mg/g has the greatest radical scavenging effect.

The calculated IC50 value for the DPPH peptide EPEV-
LR of 2.03 mg/ml in the studies of Lin et al. (2025) [44] was 
comparable to the values for the commercial antioxidant 
glutathione, which allowed the authors to conclude that it 
has significant antioxidant efficacy.

Table 1. Antioxidant properties of protein hydrolysates

Sample FRAP, µmol-equiv. 
quercetin/g

DPPH,
IC50 mg/g

PH-C 235 ± 7.02a 2.994 ± 0.015b
PH-P 242 ± 5.87a 1.597 ± 0.011b
PH-B 190 ± 4.8a 1.363 ± 0.009b

Values are means ± SEM, n = 5 per treatment group. Means in a row with­
out a common superscript letter differ (P < 0.05) as analyzed by one-way 
ANOVA and the TUKEY test

Most antioxidant peptides contain from 4 to 16 ami-
no acids and have a molecular weight of about 400–
2000 Da [45]. It was noted that low molecular weight pep-
tides have higher electron-donating properties, therefore 
the FRAP of peptides decreases with increasing molecular 
weight. The experimental results confirm that the ultrafil-
tered sheep placenta peptide fraction < 3 kDa exhibited the 
highest FRAP activity [46].

In this case, the type of amino acid plays an important 
role: aromatic amino acids neutralize radicals by donating 
protons; hydrophobic amino acids can increase the amount 
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of peptides at the water-lipid interface and scavenge free 
radicals from the lipid phase; carbonyl and amino groups 
in the side chain of acidic amino acids act as metal ion che-
lators [47].

High antioxidant activity was found in quinoa peptides 
consisting of amino acid residues such as arginine, histi-
dine, aspartate, glycine, and glutamate [48].

Hydrolysate samples with a large number of short-
chain peptides have a higher reducing capacity due to bet-
ter contact of proton-donor groups with the metal.

The results obtained by Liu et al. [45] showed that as the 
meat matured and the amount of small peptides increases, 
FRAP activity increases. The authors attribute the reducing 
capacity of antioxidant peptides to their more accessible 
structure, where exposed functional groups of amino acid 
residues can readily react with oxidizing agents [12].

The antioxidant activity of hydrolysates may be due to 
changes in protein structure that occur as a result of en-
zymatic hydrolysis. The ability of amino acids to interact 
with oxidants leads to changes in their structure and, con-
sequently, to changes in the properties of residual groups.

Free amino acids in protein hydrolysates
The bioavailability and nutritional value of the human 

diet depend on the presence of free amino acids, which 
are absorbed directly in the small intestine, unlike native 
proteins. Their breakdown occurs through enzymatic hy-
drolysis in the digestive tract. This property ensures their 
rapid participation in protein synthesis and other meta-
bolic functions in the body.

Analysis of free amino acids revealed an increase in 
their content in both the control and experimental hydro-
lysate samples after fermentation (Figure 2).

0 10 20 30 40 50 60 70

Aspartic acid

Glutamic acid

Serine

Histidine

Glycine

Threonine

Arginine

Alanin

Tyrosine

Cystine

Valine

Methionine

Phenylalanine

Isoleucine

Leucine

Lysine

Proline

Amino acid content, mg/ 100 g
PH-B PH-P Hydrolyzed PH-C PH-C in the start time

a

a
a

a

a
a

aa
a

a a

a a
a

b
b

b

b
c

c

b
b

b
c

b

b

b

a a
a

a aab

a aab

b
aaa

b
a aa

aa ab

a
b

b
c

aaa
b

b

b

aaa

aaa

Figure 2. The content of free amino acids in protein hydrolysates. Means in a row without a common 
superscript letter differ (P < 0.05) as analyzed by one-way ANOVA and the TUKEY test (n  =  5).
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It is particularly noteworthy that in the hydrolysates 
from the gizzard of broiler chickens fermented using pro-
pionic acid bacteria and bifidobacteria, a significant in-
crease in the level of essential amino acids was recorded 
compared to the control sample at the initial stage (from 
212.14 mg/100 g to 463.15 mg/100 g and 501.31 mg/100 g, 
respectively). In the experimental samples, a decrease in 
the histidine content by 12–23 % relative to the initial val-
ues was also observed. Significant differences in the amino 
acid content were also noted in all experimental samples 
compared to the control sample before fermentation. The 
presented results demonstrate that the bacteria used ex-
hibit proteolytic activity against proteins of the muscular 
and connective tissue of the gizzard. The effective action 
of exopeptidases on proteins is noteworthy. The significant 
accumulation of individual free amino acids confirms that 
probiotic microorganisms produce them during metabo-
lism. Based on the findings in [49], the abundant free ami-
no acids — tyrosine, methionine, and lysine — are likely 
key contributors to the observed antioxidant activity in the 
studied hydrolysates.

Fermentation of black soldier fly larvae paste by L. pa-
racasei was shown by Zhang et al.  [29] to markedly en-
hance the free amino acid profile, with levels of serine, va-
line, isoleucine, aspartic acid, glutamic acid, and histidine 
increasing by over 100 % compared to the control. Further-
more, over 90 % of the resulting small peptides were rich in 
hydrophobic amino acids, a feature linked to their antioxi-
dant potential [29]. This aligns with the established prin-
ciple that antioxidant capacity in hydrolysates arises from a 
synergy of hydrophobic and hydrophilic residues [50].

Specifically, the presence of key hydrophobic amino ac-
ids, such as proline, alanine, valine, leucine, and isoleucine, 
is a critical design consideration for synthetic antioxidant 
peptides [51].

The antioxidant contribution is further amplified as 
amino acids, such as tyrosine, methionine, proline, his-
tidine, lysine, and tryptophan, are intrinsically bioactive, 

exerting antioxidant effects both within peptide sequences 
and in their free form [52].

According to our research, a significant accumulation 
of the amino acid proline was observed in the hydrolysate 
obtained by fermentation of by-products by bifidobacte-
ria. It is also worth noting that the hydrolysate obtained 
by fermenting with propionic acid bacteria contained ap-
proximately twice as much isoleucine after 12 hours of fer-
mentation compared to the control.

Sulfur-containing amino acids, which can act as anti-
oxidants on their own, are particularly noteworthy. There-
fore, peptides containing these amino acids in very short 
chains may possess high antioxidant potential. Cysteine 
has proton-donating properties, while essential amino ac-
ids can chelate metal ions [53].

During the fermentation process, the hydrolysates we 
obtained released a significant amount of sulfur-containing 
amino acids, which may also have influenced the enhance-
ment of the antioxidant properties of the hydrolysates.

According to Wang et al. [54], the antioxidant potency 
of the VKVGNEF and MEAPPHI peptides stems from 
their abundance of hydrophobic amino acids  — such as 
proline, valine, and methionine. These residues are strate-
gically distributed along the peptide chains and are nota-
bly positioned at the terminal ends, a configuration that 
enhances their activity. The mechanism for effective free 
radical scavenging is primarily mediated by phenylalanine 
at the C‑terminus of VKVGNEF, which scavenges oxida-
tive chains via hydrogen atom transfer.

Many authors have studied the effect of the amino acid 
composition of hydrolysates and peptides on the antioxi-
dant activity and the mechanisms of such action (Table 2).

High antioxidant activity was demonstrated in soy hy-
drolysates against oil oxidation during several frying cy-
cles of chips. The authors attribute the oxidative stability of 
palm kernel oil after 8 and 12 frying cycles to its low con-
tent of hydroperoxides, carbonyl and volatile compounds, 
unique structural features, and high short-chain peptide 

Table 2. Mechanisms of manifestation of antioxidant properties of amino acids
Amino acid Mechanism of action Source

histidine scavenges free radicals through the imidazole ring [55]
proline due to the low ionization potential of the pyrrolidine ring, as a proton/hydrogen 

donor, it can quench singlet oxygen
[56]

cysteine, lysine, histidine, methionine, 
tryptophan, and tyrosine

effectively scavenge free radicals [57]

sulfur-containing amino acids (cysteine 
and methionine)

due to the easy oxidation of sulfhydryl groups by free radicals, they protect normal 
cells from damage

[58]

cysteine, histidine, aspartic acid, and 
glutamic acid

promote metal chelation as an important part of free radical inhibition [56,59]

hydrophobic amino acids could easily pass through the cell membrane lipid bilayer to destroy a reactive 
oxygen species in cells

[60–63]

might increase the affinity and reactivity of peptides to the cell membranes and 
contribute to the accessibility of peptides to lipid-soluble reactive oxygen species to 
terminate lipid peroxidation

[64]

aromatic amino acids (tryptophan, 
tyrosine, histidine, and phenylalanine)

phenolic, indole and imidazole groups act as hydrogen radical donors for electron-
deficient free radicals

[64–66]
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content. The mechanism for this activity of the hydroly-
sate during soy fermentation with pepsin was revealed by 
analyzing the results of SDS-PAGE and tandem mass spec-
trometry. Furthermore, the scientists note the high content 
of amino acids with electron-donating capacity — trypto-
phan, histidine, and methionine [67].

UPLC-ESI-Q-TOF-MS analysis and sequencing 
of biopeptides
As a result of determining the peptides (Figure 3) using 

high-performance liquid chromatography combined with 
mass spectrometry, it was established that their total num-
ber in hydrolysates is more than 300.

In silico studies play a crucial role in assessing the ac-
tivity of protein hydrolysates, providing powerful tools for 
analyzing and predicting their functional properties at the 
molecular level.

These approaches, based on computational models and 
algorithms, allow researchers to process and interpret large 
volumes of bioinformatics data, making them indispens-
able in modern scientific research. One of the key aspects 
of using in silico methods is the ability to rapidly screen 
and identify potential bioactive peptides derived from pro-
tein sources. Combining molecular modeling, structural 
biology, and computational analysis enables effective pre-
diction of the activities of such peptides, including anti-
oxidant, antimicrobial, and anti-inflammatory properties.

This significantly accelerates the discovery and devel-
opment of new functional supplements based on protein 
hydrolysates, which is relevant in the face of growing con-
sumer demand for products with improved nutritional 
properties.

In order to identify bioactive peptides, as well as to pre-
dict their biological activity in silico, the BioPep database 
was used, as recommended by many scientists [68,69].

The PeptideRanker system is recommended for assess-
ing the probability of peptide activity by conditionally as-
signing scores from 0 to 1, where “1” and “0” represent the 
highest and lowest probability, respectively [40].

Peptide profiling (Table 3) revealed a diverse range of 
physiologically active sequences.

Notably, the antioxidant peptide VW was present at a 
significantly elevated concentration in the PH-P sample 
relative to the control.

We also detected several other peptides with putative 
antioxidant functions, including HHY, SQLPLHR, GHHS, 
PTHHFHVALL, and AVHHMVW, although these were 
found in statistically insignificant quantities (BioPep da-
tabase). Furthermore, analysis using the PeptideRanker 
database (Table 4) identified additional high-potential bio-
active peptides, among which PHHSSASCCLW, PPHM, 
and HGVCWIY were also predicted to possess antioxidant 
activity.

Means in a row without a common superscript letter 
differ (P < 0.05) as analyzed by one-way ANOVA and the 
TUKEY test.

Table 3. Characterization of the identified peptides

Se
qu

en
ce

Activity (according 
to BioPep)

Content, mg/100 g PH

PH-B PH-C PH-P

TR dipeptidyl peptidase IV 
inhibitor

0.2 ± 0.01e 0.5 ± 0.01d 9.0 ± 0.03d

SY ACE inhibitor dipeptidyl 
peptidase IV inhibitor

10.6 ± 0.03b 20.3 ± 0.08b 9.8 ± 0.06c

VW

ACE inhibitor
Antioxidative
dipeptidyl peptidase 
IV inhibitor
alpha-glucosidase inhibitor 1.4 ± 0.01c 7.5 ± 0.02c 20.1 ± 0.17b

PPP ACE inhibitor 16.1 ± 0.11a 15.2 ± 0.09a 35.7 ± 0.26a

SW dipeptidyl peptidase 
IV inhibitor

1.1 ± 0.03d 3.0 ± 0.07d 7.2 ± 0.07e

Values are means ± SEM, n = 5 per treatment group. Means in a row with­
out a common superscript letter differ (P < 0.05) as analyzed by one-way 
ANOVA and the TUKEY test.

Table 4. Peptides with high potential biological activity 
according to the PeptideRanker database

Sequence

Pr
ob

ab
ili

ty
 th

at
 

th
e 

pe
pt

id
e 

w
ill

 b
e 

ac
tiv

e 
(a

cc
or

di
ng

 to
 

Pe
pt

id
eR

an
ke

r) Content, mg/100 g PH

PH-B PH-C PH-P

KEPPPGM 0.752229 0,8 ± 0.01e 4,2 ± 0.01e 1,7 ± 0.01e

HGVCWIY 0.759981 6,2 ± 0.02с 0,2 ± 0.01e 4,1 ± 0.01e

PGTHPLLVF 0.761792 3,4 ± 0.02с 0,7 ± 0.01e 0,2 ± 0.01e

SGAPM 0.770648 157,0 ± 1.31a 10,4 ± 1.29a 14,4 ± 0.02с

PAVVSCLPGPL 0.771864 8,5 ± 0.02с 0,4 ± 0.01e 6,2 ± 0.01e

PPPGV 0.776567 0,2 ± 0.01e 6,2 ± 0.02с 0,4 ± 0.01e

HGSPGHGWVL 0.780265 0,2 ± 0.01e 11,5 ± 0.02с 6,8 ± 0.02с

GRGHIWGQM 0.782054 0,2 ± 0.01e 12,6 ± 0.02с 0,2 ± 0.01e

PHHSSASCCLW 0.785109 16,0 ± 0.02с 0,1 ± 0.01e 10,1 ± 0.01e

ICIMAPIAF 0.786922 0,2 ± 0.01e 4,3 ± 0.02c 24,8 ± 0.06с

VGICIYCL 0.791613 0,4 ± 0.01e 8,2 ± 0.02с 0,4 ± 0.01e

VICFFSVW 0.823681 6,2 ± 0.02с 0,1 ± 0.01e 4,1 ± 0.01e

GLGGAWAF 0.83727 0,1 ± 0.01e 3,1 ± 0.02с 0,4 ± 0.01e

KVPPPRPPL 0.837789 3,5 ± 0.02с 0,1 ± 0.01e 0,2 ± 0.01e

GSAPCPG 0.860877 6,4 ± 0.02с 14,1 ± 0.02с 0,1 ± 0.01e

PGGPGPAM 0.872244 0,1 ± 0.01e 2,2 ± 0.01c 0,1 ± 0.01e

IHPF 0.888252 0,2 ± 0.01e 4,9 ± 0.02с 0,6 ± 0.01e

PPHM 0.899505 9,6 ± 0.02с 1,8 ± 0.01e 0,1 ± 0.01e

PCSIF 0.899527 7,5 ± 0.02с 16,5 ± 0.09b 0,2 ± 0.01e

GCTF 0.906178 12,3 ± 0.02с 3,6 ± 0.02c 10,3 ± 0.02e

QPPQPALAGLVF 0.906993 0,8 ± 0.01e 3,5 ± 0.01b 15,8 ± 0.02с

VAPWIMM 0.927034 12,6 ± 0.09b 0,1 ± 0.01e 0,2 ± 0.01e

PFGAFCNVW 0.93261 6,4 ± 0.02с 0,2 ± 0.01e 0,2 ± 0.01e

IVCWLPAF 0.937182 0,1 ± 0.01e 10,3 ± 0.02с 0,1 ± 0.01e

GGPPPPPPHPG 0.960782 8,6 ± 0.02с 0,2 ± 0.01e 6,1 ± 0.01e

PPPHPFPVALL 0.961163 12,1 ± 0.02с 0,2 ± 0.01e 0,2 ± 0.01e

GFPFPGIHW 0.975569 0,1 ± 0.01e 10,1 ± 0.02с 1,9 ± 0.01e

Values are means ± SEM, n = 5 per treatment group.
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The hydrolysate obtained by fermentation of raw ma-
terials with bifidobacteria contained the lowest content 
of a peptide with measured antioxidant activity. However, 
it contains a large number of peptides with high potential 
antioxidant activity; which, apparently, affects the forma-
tion of a high antiradical activity of DPPH (76.5 % for the 
1 % protein hydrolysate solution).

Li et al. [70] determined that H, P, C, Y, W, F, and M are 
involved in the prevention of lipid peroxidation [70] and 
in the transfer of electrons and protons. The authors at-
tributed the enhanced DPPH radical scavenging activity in 
the 5–10 kDa fraction to a high proportion of hydrophobic 
residues, specifically aliphatic (Val, Ile, Leu) and aromat-
ic (Phe, Tyr) amino acids, a finding that aligns with our 
data. We further posit that leucine and proline within the 
active peptides facilitate interactions with radical species 
through hydrophobic forces. This is consistent with prior 
research [58], which has documented the broad bioactivity 
of tryptophan-containing peptides.

These peptides possess antioxidant activity, allow-
ing them to protect cells from oxidative stress, and also 
act as angiotensin-converting enzyme (ACE) inhibitors, 
which may help regulate blood pressure. Furthermore, 
they exhibit antidiabetic properties, helping to normal-
ize blood sugar levels and improve metabolism. Thus, 
tryptophan-containing peptides represent a promising 
group of compounds for the development of functional 
foods and therapeutic agents. Peptides with tryptophan 
at the C‑terminus, identified in experimental samples 
of hydrolysates, have a high capacity to reduce trivalent 
iron ions.

Numerous researchers in food science and biochem-
istry have identified bioactive peptides with antioxidant 
properties obtained through whey hydrolysis, confirming 
the high value of this source as an ingredient for the devel-
opment of functional foods [28,59].

These studies open new horizons in understanding 
the mechanisms of antioxidant action and their potential 
use in the human diet. Furthermore, modern scientific 
research is actively pursuing studies aimed at analyzing 
the bioactive peptides formed in raw meat during natural 
maturation and fermentation, which can significantly im-
prove their nutritional properties and functionality in food 
products [71,72].

Significant research focus is being directed toward the 
byproducts of enzymatic hydrolysis, presenting a promis-
ing route for valorizing resources that were once consid-
ered inaccessible [42,73].

Concurrently, microbial fermentation of livestock and 
poultry organs is emerging as a key area of interest. This 
approach has proven effective, as demonstrated by the 
fermentation of broiler chicken stomachs to generate a 
protein hydrolysate containing peptides with both docu-

mented and potential antioxidant properties. These results 
highlight the importance and need for further research 
aimed at identifying and thoroughly characterizing the 
discovered peptides. A detailed analysis of their proper-
ties could facilitate the development of new functional ad-
ditives that could improve human health and extend the 
shelf life of food products, a significant step toward creat-
ing a nutritious and safe diet.

Conclusion
The results of studies conducted to evaluate the proper-

ties of protein hydrolysates obtained by microbial fermen-
tation demonstrate a high level of antioxidant activity in 
these compounds.

The results showed that the FRAP antioxidant activ-
ity of the experimental hydrolysate sample obtained by 
fermentation using bifidobacteria was 30 % lower than 
that of other samples. However, this sample exhibited 
the greatest free radical scavenging effect, with an IC50 of 
1.363 mg/g.

A significant accumulation of the amino acid proline 
was observed in the hydrolysate obtained by fermentation 
of by-products by bifidobacteria. It is also worth noting 
that the hydrolysate obtained by fermenting with propi-
onic acid bacteria contained approximately twice as much 
isoleucine after 12 hours of fermentation compared to the 
control.

During the fermentation process, the hydrolysates 
we obtained released a significant amount of sulfur-con-
taining amino acids, which may also have influenced the 
enhancement of the antioxidant properties of the hydro-
lysates.

These data are consistent with the results of peptide 
analysis, highlighting the link between the fermentation 
process and the properties of the resulting hydrolysates. 
The microbial species used demonstrated pronounced 
proteolytic activity, which can be characterized by the sig-
nificant accumulation of free amino acids and peptides in 
the resulting hydrolysates.

During the analysis of the hydrolysates, peptides with 
established antioxidant activity and peptides with poten-
tial antioxidant properties were identified, opening new 
horizons for further research. These findings validate the 
scientific potential for refining the production and applica-
tion of these peptides.

Consequently, the study confirms microbial fermenta-
tion as an effective method for generating protein hydro-
lysates and underscores the necessity of further character-
izing the detected peptides. Such research is a significant 
contribution to food science, paving the way for novel 
functional products with enhanced antioxidant activity 
and superior nutritional profiles, thus creating new oppor-
tunities for safe, healthy food ingredients.
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