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Introduction
Correlation (from the Latin correlatio), or correlation 

dependence is a statistical relationship between two or more 
random variables (or values that may be considered as such 
with some acceptable degree of accuracy), while changes in 
the values of one or more of these variables are accompanied 
by a systematic change in the values of other variable(s) [1].

The term “correlation” was first used by the French pa-
leontologist Jean Cuvier (1769–1832) in 1806: he developed 
the “law of correlation” for parts and organs of living organ-
isms to restore the appearance of fossil animals. The law 
of correlation helps to reconstruct the appearance of the 
entire animal and its place in the system using skulls, bones, 
etc. from excavations: if the skull has horns, then it was an 
herbivore, and its legs had hooves; if legs have claws, then 
it was a carnivore without horns, but with large cuspids [2]. 
The following story is known about Cuvier and the “law of 
correlation”. During a university holiday, students decided 
to play a prank on Professor Cuvier. They dressed one of 
the students in a goatskin with horns and hooves and lifted 

him in Cuvier’s bedroom window. The student stomped 
his hooves and yelled: “I’ll eat you!” Cuvier woke up, saw 
a silhouette with horns and calmly answered: “If you have 
horns and hooves, then according to the law of correlation, 
you are an herbivore, and you cannot eat me. And for not 
knowing the law of correlation, you’ll get a bad mark!” [3].

However, in statistics, the term “correlation” (in relation 
to Spearman correlation) was first used by the English biolo-
gist and statistician Galton F. (1822–1911) at the end of the 
19th century. In 1892, he was the first to propose principles 
on how to calculate the correlation coefficient. His work was 
greatly influenced by the papers of Charles Darwin, who 
was his cousin. At a meeting of the Royal Society in 1888, 
Galton F. has presented a report “Correlations and their 
measurement, mainly from anthropometric data”, which 
was devoted to the correlation between the length of arms 
and legs in a well-proportioned person. An article based on 
the 1888 report was published next year [4]. “Two variable 
organs are considered correlated when a change in one of them 
is accompanied, in general, by a greater or lesser change in 
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the same direction in the other organ. Thus, the length of the 
arm is considered to be correlated with the length of the leg, 
because a person with a long arm usually has a long leg, and 
vice versa” [4].

Galton F. calculated the correlation coefficient in an-
thropometry and in heredity studies. At University Col-
lege London, Galton F. was the supervisor of Pearson K. 
(1857–1936), and then they worked together for many years. 
Pearson K. subsequently became a brilliant mathematician 
and biographer of Galton F.

Pearson K. is the founder of mathematical statistics, in 
particular the theory of correlation. He improved math-
ematical tools for calculating correlation. As a result, widely 
recognized Pearson correlation coefficient appeared, or 
analysis using Pearson method. In addition to Pearson K., 
Francis Ysidro Edgeworth and Walter Frank Raphael Weldon 
also worked on Pearson correlation coefficient [5]. He also 
developed nonparametric xi-squared coefficient. These coef-
ficients are widely used in psychodiagnostics studies. Due 
to them, a tradition of using quantitative methods in the 
development and use of psychological tests was established.

Along with this, the following scientists made a significant 
contribution to the development of correlation analysis: 
Charles Edward Spearman (1863–1945), Maurice George 
Kendall (1907–1983), Alexander Tschuprow (1874–1926), 
George Udny Yule (1871–1951) and many others.

There are two types of association between phenomena, 
i. e. functional and correlation ones.

Correlation relationships between attributes may arise 
in different ways.

The first (most important) way is the causal dependence 
of the resulting attribute (its variation) on the variation of 
the factor attribute. For example, attribute x is a score for 
assessing soil fertility, and attribute y is the yield of an agri-
cultural crop. Here it is completely clear which attribute acts 
as an independent variable (factor) x, and which attribute 
acts as a dependent variable (result) y.

The second way is contingency, which arises in the 
presence of a common cause. There is a well-known clas-
sic example given by the largest statistician in Russia at the 
beginning of the 20th century, Tschuprow A.: if we take the 
number of fire brigades in the city as attribute x, and the 
amount of losses from fires per year in the city as attribute y, 
then there is a direct correlation between attributes x and y in 
the Russian cities; on average, the more firefighters in a city, 
the greater the losses from fires! Did the firefighters set fires 
for fear of losing their jobs? No, the point is different. This 
correlation cannot be interpreted as an association between 
cause and consequence; both attributes are consequences of a 
common cause, i. e. the size of the city. It is quite logical that 
in large cities there are more fire departments, but there are 
more fires and losses from them per year than in small cities.

The third way correlation arises is a relationship of at-
tributes, each of which is both a cause and a consequence. 
This is, for example, the correlation between the levels of 
labor productivity of workers and the level of wages for 

1 hour of labor (rate). On the one hand, the level of wages 
is a consequence of labor productivity: the higher it is, the 
higher the payment. But, on the other hand, established 
rates play a stimulating role: with the right payment system, 
they act as a factor on which labor productivity depends. In 
such an attribute system, both formulations of the problem 
are permissible; each attribute can act as an independent 
variable x and a dependent variable y.

The publication provides an overview and systematizes 
information on the conditions for using various correlation 
coefficients and their grading scales.

Objects and methods
The research materials are monographs, manuals, articles, 

educational documents on statistics.
The authors searched for publications using key phrases: 

“correlation coefficients”, “rank correlation coefficients”, 
“association coefficient and contingency coefficient”, “grad-
ing scales for correlation coefficients” in Scopus, PubMed, 
MEDLINE, Web of Knowledge, Google Scholar, IEEE Xplore, 
Science Direct, eLibrary (RSCI) databases.

The identified publications were preliminarily analyzed 
in the context of abstracts. The authors selected the follow-
ing exclusion criteria:
1. works, scientific publications, textbooks devoted to 

“classical” methods of statistics;
2. publications not related to food and agricultural products.

Inclusion criteria:
1. scientific articles, textbooks, monographs devoted to 

nonparametric statistics;
2. publications predominantly in English.

Main part
Correlation coefficients
Typically, correlation coefficient is a measure of correla-

tion (or strength of association) between random variables. 
The following correlation coefficients exist: Pearson coef-
ficient, Spearman coefficient, Kendall coefficient, etc. [6]. 
Table 1 presents the types of correlation coefficients and 
describes the scales in which variables vary.

Pearson correlation coefficient (r)
Pearson coefficient is used quite often by researchers. 

But before choosing this criterion you need to: 1) know the 
data type; 2) know the distribution of the studied attributes 
in the general population, and if this is unknown, you need 
to check the distribution of both variables in the sample; 
3) construct scattergrams in order to make sure that the 
association between variables is linear, and also to check 
the homoscedasticity [8].

With skewed distributions, as well as in the presence of true 
outliers (if researchers decide to include them for analysis), 
it is better to use nonparametric correlation coefficients, i. e. 
Spearman coefficient, Kendall coefficient, Cramér’s coefficient, 
etc. It is worth noting that in foreign publications, Spearman 
correlation coefficient is found much more often [9,10].
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Spearman rank correlation coefficient (ρ)
Rank correlation coefficients are used to measure rela-

tionships between attributes, the values of which may be 
ordered or ranked according to the decrease (or increase) 
of a given indicator in the objects under study.

Spearman rank correlation coefficient is a quantitative 
assessment of the association between phenomena, which is 
used in nonparametric methods. It determines the strength 
and direction of the correlation association between two at-
tributes or two profiles of attributes. In this case, the actual 
degree of parallelism between the two quantitative series 
of observations being studied is determined and an assess-
ment of the established association strength is given using 
a quantitatively expressed coefficient [11]. The criterion was 
developed and proposed for correlation analysis in 1904 by 
Charles Edward Spearman, an English psychologist, professor 
at the Universities of London and Chesterfield.

(1)
where is the difference between ranks;
n is the number of attribute values observed.
Rank is the position of an element in a variation series. 

A variation series is a series whose elements are arranged 
in ascending or descending order.

The significance of Spearman correlation coefficient may 
be determined by Student’s test (t-test) with the number of 
degrees of freedom equal to.

(2)
The criteria for applying the nonparametric Spearman 

rank correlation coefficient are described in detail in [10], 
and are as follows:

1. Examination of quantitative data distributions for nor-
mality is not required. It can be used for samples whose data 
partially or completely does not follow the law of normal 
distribution.

2. If the data from one of the samples can be presented 
on an ordinal scale, the data from the second sample must 
be quantitative.

3. If the sample size exceeds 5 observations.
4. If there are a large number of identical ranks for one 

or both compared variables, then Spearman correlation 
coefficient gives rough values. Ideally, both correlated series 

should represent two sequences of divergent values.
Kendall correlation coefficient (τ)
Kendall rank correlation [12] is an alternative to Spearman 

correlation in the case of two ordinal scales. This method 
is a measure of the strength of a nonlinear association and 
uses an increase or decrease in the resultant attribute as the 
factor attribute increases. Thus, the calculation of Kendall 
correlation coefficient involves counting the number of 
coincidences and inversions. To use Kendall correlation 
coefficient, there is only one requirement: the scales of the 
X and Y variables must be ordinal.

(3)
where Q is the minimum number of exchanges of neigh-

boring elements in one of the rankings for its coincidence 
with another ranking.

The statistics for the test of significance of this coefficient 
have a normal distribution.

(4)
where is a sample size; is a critical point of the two-sided 

critical region determined by Laplace function [13, 14, 15, 16].
If rank correlation between attributes is insignificant.
If, there is a significant rank correlation between attri-

butes.
Same as for Spearman correlation coefficient: when ranks 

coincide, with opposite ranks. Kendall rank correlation 
coefficient has some advantages over Spearman coefficient. 
In particular, it may also be used for multivariate analysis. 
With a sufficiently large number of objects, there is a simple 
association between the values of rank correlation coef-
ficients [17].

Example. Two panelists conduct a sensory analysis of 10 
cooked sausage samples: ranked in descending order.

Ranks by the first panelist: 2, 3, 1, 6, 5, 4, 8, 7, 10, 9
Ranks by the second panelist: 3, 1, 2, 6, 7, 4, 5, 9, 10, 8
Using Spearman rank correlation coefficient and Kendall 

rank correlation coefficient, it should be determined whether 
the ratings of the panelist are consistent.

Solution.
I.1. To determine Spearman rank correlation coefficient, 

let’s find the difference between the ranks, and the square of 
the difference between the ranks. The results are presented 

Table 1. Types of correlation coefficients [7]

Correlation coefficient
Types of scale

variable X variable Y
Pearson coefficient (r) Interval scale with normal distribution Interval scale with normal distribution

Spearman coefficient (ρ)
Interval scale with normal distribution Ordinal scale
Interval scale with normal distribution Interval scale with normal distribution

Kendall coefficient (τ) Ordinal scale Ordinal scale
Phi correlation coefficient (ϕ) for tables 2 × 2 Nominal scale Nominal scale
Cramér’s coefficient (V) for tables more than 2 × 2 Nominal scale Nominal scale
Rank-biserial correlation coefficient (rrb) Nominal scale Ordinal scale
Point-biserial correlation coefficient (rpb) Nominal scale Interval scale with normal distribution
Matthews correlation coefficient (MCC) Nominal scale Nominal scale
Fechner correlation coefficient (rΦ) Interval scale with normal distribution Interval scale with normal distribution
Tschuprow contingency coefficient (rch) Nominal scale Nominal scale

Table 1. Types of correlation coefficients [7]  

Correlation coefficient 
Types of scale 

variable X variable Y 
Pearson coefficient (r)  Interval scale with normal distribution Interval scale with normal distribution 

Spearman coefficient (ρ)  
Interval scale with normal distribution Ordinal scale 
Interval scale with normal distribution Interval scale with normal distribution 

Kendall coefficient ()  Ordinal scale Ordinal scale 
Phi correlation coefficient () for tables 2×2  Nominal scale Nominal scale 
Cramér’s coefficient (V) for tables more than 2×2  Nominal scale Nominal scale 
Rank-biserial correlation coefficient (𝒓𝒓𝒓𝒓𝒓𝒓)  Nominal scale Ordinal scale 

Point-biserial correlation coefficient (𝒓𝒓𝝆𝝆𝒓𝒓)  Nominal scale Interval scale with normal distribution 

Matthews correlation coefficient (МСС)  Nominal scale Nominal scale 

Fechner correlation coefficient (𝒓𝒓𝜱𝜱)  Interval scale with normal distribution Interval scale with normal distribution 

Tschuprow contingency coefficient (𝒓𝒓𝒄𝒄𝒄𝒄)  Nominal scale Nominal scale 

Spearman rank correlation coefficient (ρ) 
Rank correlation coefficients are used to measure rela-

tionships between attributes, the values of which may be 
ordered or ranked according to the decrease (or increase) 
of a given indicator in the objects under study.  

Spearman rank correlation coefficient is a quantitative 
assessment of the association between phenomena, which 
is used in nonparametric methods. It determines the 
strength and direction of the correlation association be-
tween two attributes or two profiles of attributes. In this 
case, the actual degree of parallelism between the two 
quantitative series of observations being studied is deter-
mined and an assessment of the established association 
strength is given using a quantitatively expressed coeffi-
cient [11]. e criterion was developed and proposed for 
correlation analysis in 1904 by Charles Edward Spearman, 
an English psychologist, professor at the Universities of 
London and Chesterfield.  

 𝜌𝜌 = 1 − � ∑ ��
��

���
����

 (1) 
where 𝑑𝑑� = 𝑥𝑥� − 𝑦𝑦�  is the difference between ranks;  
 n is the number of attribute values observed.  
 

Rank is the position of an element in a variation series. 
A variation series is a series whose elements are arranged 
in ascending or descending order.  

e significance of Spearman correlation coefficient 
may be determined by Student’s test (t-test) with the num-
ber of degrees of freedom equal to 𝑛𝑛 − 2.  

 𝑡𝑡 = 𝜌𝜌 ∙ � ���
���� (2) 

e criteria for applying the nonparametric Spearman 
rank correlation coefficient are described in detail in [10], 
and are as follows:  

1. Examination of quantitative data distributions for 
normality is not required. It can be used for samples whose 
data partially or completely does not follow the law of nor-
mal distribution.  

2. If the data from one of the samples can be presented 
on an ordinal scale, the data from the second sample must 
be quantitative.  

3. If the sample size exceeds 5 observations.  

4. If there are a large number of identical ranks for one 
or both compared variables, then Spearman correlation co-
efficient gives rough values. Ideally, both correlated series 
should represent two sequences of divergent values.  

 
Kendall correlation coefficient ()  
Kendall rank correlation [12] is an alternative to Spear-

man correlation in the case of two ordinal scales. is 
method is a measure of the strength of a nonlinear associ-
ation and uses an increase or decrease in the resultant at-
tribute as the factor attribute increases. us, the calcula-
tion of Kendall correlation coefficient involves counting 
the number of coincidences and inversions. To use Kendall 
correlation coefficient, there is only one requirement: the 
scales of the X and Y variables must be ordinal.  

 𝜏𝜏 = ��
�(���) − 1 (3) 

where Q is the minimum number of exchanges of neighboring 
elements in one of the rankings for its coincidence with an-
other ranking.  

 

e statistics for the test of significance of this coeffi-
cient have a normal distribution 𝑁𝑁(0, 1). 

 𝑇𝑇�� = 𝑧𝑧�� ∙ ��∙(����)
��∙(���) (4) 

where 𝑛𝑛 is a sample size; 𝑧𝑧��  is a critical point of the two-sided 
critical region determined by Laplace function Φ(𝑧𝑧��) = ���

�
 

[13,14,15,16].  
 

If |𝜏𝜏|  <  𝑇𝑇��, rank correlation between attributes is in-
significant.  

If |𝜏𝜏|  >  𝑇𝑇��, there is a significant rank correlation be-
tween attributes.  

Same as for Spearman correlation coefficient: when 
ranks coincide 𝜏𝜏 = 1, with opposite ranks 𝜏𝜏 = −1. Kendall 
rank correlation coefficient has some advantages over 
Spearman coefficient. In particular, it may also be used for 
multivariate analysis. With a sufficiently large number of 
objects (𝑛𝑛 ≥ 10), there is a simple association between the 
values of rank correlation coefficients 𝜌𝜌 = 1.5 ∙ 𝜏𝜏 [17].  

Example. Two panelists conduct a sensory analysis of 
10 cooked sausage samples: ranked in descending order.  



240

Nikitina et al. THEORY AND PRACTICE OF MEAT PROCESSING, 2023, vol. 8, no. 3, pp. 237–251

in Table 2.Ranks by the first panelist: 2, 3, 1, 6, 5, 4, 8, 7, 10, 9  
Ranks by the second panelist: 3, 1, 2, 6, 7, 4, 5, 9, 10, 8  
Using Spearman rank correlation coefficient and Ken-

dall rank correlation coefficient, it should be determined 
whether the ratings of the panelist are consistent.  

Solution. 
I.1. To determine Spearman rank correlation coeffi-

cient, let’s find the difference between the ranks 𝑑𝑑� , and the 
square of the difference between the ranks 𝑑𝑑�

�. e results 
are presented in Table 2.  

 
Table 2. Calculation results  

No. of the 
cooked sausage 

sample 
1 2 3 4 5 6 7 8 9 10 

Panelist 1  2 3 1 6 5 4 8 7 10 9 
Panelist 2  3 1 2 6 7 4 5 9 10 8 

𝒅𝒅𝒊𝒊 –1 2 –1 0 –2 0 3 –2 0 1 
𝒅𝒅𝒊𝒊

𝟐𝟐 1 4 1 0 4 0 9 4 0 1 
 
2. Let's determine the sum of squares of the rank differ-

ence. e number of samples is 10, i.e. n=10. 

� 𝑑𝑑�
�

�

���

= 1 + 4 + 1 + 0 + 4 + 0 + 9 + 4 + 0 + 1 = 24 

3. According to the formula (1), let’s calculate Spear-
man rank correlation coefficient  

𝜌𝜌 = 1 𝜌
6 ∙ 24

10� 𝜌 10
= 0.8545 

4. Test of significance is carried out according to the for-
mula (2). Let’s calculate Student’s test (t-test)  

𝑡𝑡 = 0.8545 ∙ � 10 𝜌 2
1 𝜌 0.8545� = 4.6537 

5. Let’s calculate the critical values of Student’s test, sig-
nificance level 𝑝𝑝 = 0.05, the number of degrees of freedom 
in our case will be equal to 𝜐𝜐 =  𝜐𝜐 𝜌  2 =  10 𝜌 2 = 8. 
We can use statistical tables [13,14,15,16] or the function 
in MS Excel, TINV (Figure 1).  

6. Let’s plot “the axis of significance” (Figure 2) for our 
example.  

 
Figure 2. e axis of significance  

 
Since 4.6537 > 2.306, the correlation is statistically sig-

nificant.  
II.1. To determine Kendall rank correlation coefficient, 

let’s find the minimum number of exchanges of neighbor-
ing elements in one of the rankings for its coincidence with 
the other ranking. e results are presented in Table 3.  

 
Table 3. Calculation results  

No. of the 
cooked sausage 

sample 
1 2 3 4 5 6 7 8 9 10 

Panelist 1  2 3 1 6 5 4 8 7 10 9 

Panelist 2  3 1 2 6 7 4 5 9 10 8 

𝑸𝑸𝒊𝒊 7 8 7 4 3 4 3 1 0 0 

 
𝑄𝑄�  =  7 , since in the line “Panelist 2” to the right of 3 

(the values of samples that are to the right of the sample 
under consideration), there are 7 values larger than 3 (sam-
ples 4, 5, 6 ,7, 8, 9, 10). 

𝑄𝑄�  =  8 , since in the line “Panelist 2” to the right of 1, 
there are 8 values larger than 1 (samples 3, 4, 5, 6, 7, 8, 9, 10). 

𝑄𝑄�  =  7 , since in the line “Panelist 2” to the right of 2, 
there are 7 values larger than 2 (samples 4, 5, 6, 7, 8, 9, 10). 

𝑄𝑄�  =  4 , since in the line “Panelist 2” to the right of 6, 
there are 4 values larger than 6 (samples 5, 8, 9, 10). 

We filled in further in the same way.  

Insignificance area 

 
Figure 1. Calculation of the critical (reference) value of Student’ s test  

Significance area 
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Ranks by the first panelist: 2, 3, 1, 6, 5, 4, 8, 7, 10, 9  
Ranks by the second panelist: 3, 1, 2, 6, 7, 4, 5, 9, 10, 8  
Using Spearman rank correlation coefficient and Ken-

dall rank correlation coefficient, it should be determined 
whether the ratings of the panelist are consistent.  

Solution. 
I.1. To determine Spearman rank correlation coeffi-

cient, let’s find the difference between the ranks 𝑑𝑑� , and the 
square of the difference between the ranks 𝑑𝑑�

�. e results 
are presented in Table 2.  

 
Table 2. Calculation results  

No. of the 
cooked sausage 

sample 
1 2 3 4 5 6 7 8 9 10 

Panelist 1  2 3 1 6 5 4 8 7 10 9 
Panelist 2  3 1 2 6 7 4 5 9 10 8 

𝒅𝒅𝒊𝒊 –1 2 –1 0 –2 0 3 –2 0 1 
𝒅𝒅𝒊𝒊

𝟐𝟐 1 4 1 0 4 0 9 4 0 1 
 
2. Let's determine the sum of squares of the rank differ-

ence. e number of samples is 10, i.e. n=10. 

� 𝑑𝑑�
�

�

���

= 1 + 4 + 1 + 0 + 4 + 0 + 9 + 4 + 0 + 1 = 24 

3. According to the formula (1), let’s calculate Spear-
man rank correlation coefficient  

𝜌𝜌 = 1 𝜌
6 ∙ 24

10� 𝜌 10
= 0.8545 

4. Test of significance is carried out according to the for-
mula (2). Let’s calculate Student’s test (t-test)  

𝑡𝑡 = 0.8545 ∙ � 10 𝜌 2
1 𝜌 0.8545� = 4.6537 

5. Let’s calculate the critical values of Student’s test, sig-
nificance level 𝑝𝑝 = 0.05, the number of degrees of freedom 
in our case will be equal to 𝜐𝜐 =  𝜐𝜐 𝜌  2 =  10 𝜌 2 = 8. 
We can use statistical tables [13,14,15,16] or the function 
in MS Excel, TINV (Figure 1).  

6. Let’s plot “the axis of significance” (Figure 2) for our 
example.  

 
Figure 2. e axis of significance  
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We filled in further in the same way.  
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Figure 1. Calculation of the critical (reference) value of Student’ s test  
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2. Let’s calculate the sum of the values 𝑄𝑄�  

� 𝑄𝑄
�

���

= 7 + 8 + 7 + 4 + 3 + 4 + 3 + 1 + 0 + 0 = 37 

3. According to the formula (3), let’s calculate Kendall 
rank correlation coefficient 

𝜏𝜏 =
4 ∙ 37

10 ∙ (10 − 1) − 1 = 0.6444 

4. Test of significance is carried out according to the for-
mula (4). Let’s calculate the criterion 𝑇𝑇�� 

𝑇𝑇�� = 𝑧𝑧�� ∙ �
2 ∙ (2𝑛𝑛 + 5)
9𝑛𝑛 ∙ (𝑛𝑛 − 1) 

Critical point 𝑧𝑧�� in Laplace table [13,14,15,16] is equal 
to 1.96 at Φ(𝑧𝑧��) = ���

�
= ���.��

�
= 0.475 

𝑇𝑇�� = 𝑧𝑧�� ∙ �
2 ∙ (2𝑛𝑛 + 5)
9𝑛𝑛 ∙ (𝑛𝑛 − 1) = 1.96 ∙ �

2 ∙ (2 ∙ 10 + 5)
9 ∙ 10 ∙ (10 − 1) =

= 1.96 ∙ � 50
810

= 0.017 

5. Since |𝜏𝜏| >  𝑇𝑇�� , rank correlation between scores in 
two tests is significant.  

 

Phi () correlation coefficient and Cramér’s V-coefficient  
To study the strength of association between variables 

measured on a nominal scale, phi correlation coefficient 
and Cramér’s coefficient are used.  

In statistics, phi correlation coefficient (or root mean 
square contingency coefficient) is a measure of association 
between two binary variables. In machine learning, it is 
known as Matthews correlation coefficient (MCC) intro-
duced by biochemist Brian W. Matthews in 1975 and is 
used as an indicator of the quality of binary (two-class) 
classifications [18]. Phi correlation coefficient was intro-
duced by Pearson K. [19], also known as Yule phi coeffi-
cient introduced by George Udny Yule in 1912 [20].  

e criteria for applying phi ( ) correlation coefficient:  
1. Variables X and Y must be measured on a dichoto-

mous scale.  
2. e number of attributes in the compared variables 

X and Y must be the same.  
Two binary variables are considered positively associ-

ated if the majority of the data is in the diagonal cells. Oth-
erwise, if most of the data falls off the diagonal, then the 
binary variables are considered negatively associated.  

Phi correlation coefficient may be calculated using four-
fold contingency table 2×2 (Table 4). 

 

Table 4. Fourfold contingency table 2×2  
 Y=1 Y=0  

X=1 a b m1=(a+b) 
X=0 c d m2=(c+d) 

 n1=(a+c) n2=(b+d) n=(a+b+c+d) 

 𝜑𝜑 = �∙���∙�
√��∙��∙��∙��

 (5) 

where a, b, c, d are non-negative values of the number of obser-
vations, which add up to n, the total number of observations.  
 

Phi () correlation coefficient is related to point-biserial 
correlation coefficient and Cohen’s d and estimates the de-
gree of relationship between two variables (2 × 2) [21].  

Matthews correlation coefficient (MCC) is defined 
identically to phi correlation coefficient and is widely used 
in the fields of bioinformatics and machine learning. e 
coefficient is considered as a balanced measure that can be 
used even if the classes have very different sizes [22].  

Matthews correlation coefficient (MCC) returns a value 
between -1 and +1. Coefficient of “+1” represents a perfect 
prediction, “0” is no better than a random prediction, and 
“-1” indicates a complete discrepancy between the predic-
tion and observation.  

Cramér's V-coefficient is a modified phi correlation co-
efficient for tables larger than 2×2. is indicator of associ-
ation between two nominal variables varies from 0 to + 1 
(inclusive). It is based on Pearson chi-square statistics and 
was published by Harald Cramér in 1946 [23].  

e criteria for applying Cramér’s V-coefficient:  
1. Variables X and Y must be measured on a nominal 

scale, where the number of codings is more than two (not 
dichotomous scales).  

2. e number of attributes in the compared variables 
X and Y must be the same.  

Like phi correlation coefficient, Cramér’s V-coefficient 
is calculated using contingency tables (larger than 2×2).  

 𝑉𝑉 = � ��

�∙���(�����,��������) (6) 

Chi-square test is calculated according to the formula: 

  𝜒𝜒� = ∑ (������)�

���
 (7) 

where 𝑛𝑛� is the actual number of observations in ij cells;  
𝑛𝑛�� is the expected number of observations in ij cells.  
 

A general overview of the expected values is presented 
in Table 5.  

 
Table 5. A general overview of the table of the expected values  

 ere is 
an outcome (1) 

ere is 
no outcome (0) Total 

ere is a 
risk factor (1) 

(𝑨𝑨 + 𝑩𝑩) ∙ (𝑨𝑨 + 𝑪𝑪)
𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪 + 𝑫𝑫

 
(𝑨𝑨 + 𝑩𝑩) ∙ (𝑩𝑩 + 𝑫𝑫)

𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪 + 𝑫𝑫
 A+B 

ere is no 
risk factor (0) 

(𝑪𝑪 + 𝑫𝑫) ∙ (𝑨𝑨 + 𝑪𝑪)
𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪 + 𝑫𝑫

 
(𝑪𝑪 + 𝑫𝑫) ∙ (𝑩𝑩 + 𝑫𝑫)

𝑨𝑨 + 𝑩𝑩 + 𝑪𝑪 + 𝑫𝑫
 C+D 

Total А+С B+D A+B+C+D 
 
Example. A study is being conducted on the effect of 

smoking on the risk of developing arterial hypertension. 
For this purpose, two groups of subjects were selected: the 
first group included 70 people who smoke at least 1 pack of 
cigarettes daily, the second group included 80 non-smok-
ers of the same age. In the first group, 40 people had high 
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blood pressure. In the second group, arterial hypertension 
was observed in 32 people. us, in the group of smokers, 
normal blood pressure was in 30 people (70 – 40 = 30), and 
in the group of non-smokers, normal blood pressure was 
in 48 people (80 – 32 = 48).”  

Solution. Let's generate a contingency table (Table 6).  
 

Table 6. Fourfold contingency table 2×2  

 
ere is an 

arterial 
hypertension (1) 

ere is no 
arterial 

hypertension (0) 
 

Smokers (1) A=40 B=30 A+B=70 
Non-smokers (0) C=32 D=48 C+D=80 

 A+C=72 B+D=78 A+B+C+D=150 
 

A general overview of the expected values is presented 
in Table 7 according to the formulas in Table 6.  

(𝐴𝐴 𝐴 𝐴𝐴) ∙ (𝐴𝐴 𝐴 𝐴𝐴)
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴

=
70 ∙ 72

150
= 33.6 

(𝐴𝐴 𝐴 𝐴𝐴) ∙ (𝐴𝐴 𝐴 𝐴𝐴)
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴

=
80 ∙ 72

150
= 38.4 

(𝐴𝐴 𝐴 𝐴𝐴) ∙ (𝐴𝐴 𝐴 𝐴𝐴)
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴

=
70 ∙ 78

150
= 36.4 

(𝐴𝐴 𝐴 𝐴𝐴) ∙ (𝐴𝐴 𝐴 𝐴𝐴)
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴

=
80 ∙ 78

150
= 41.6 

Table 7. A general view of the expected values  

 
ere is an 

arterial 
hypertension (1) 

ere is no 
arterial 

hypertension (0) 
 

Smokers (1) 33.6 36.4 70 
Non-smokers (0) 38.4 41.6 80 

 72 78 150 
 

Let’s calculate chi-square test:  

 𝜒𝜒� = ∑ (������)�

���
 = 4.3956 

We determine the number of degrees of freedom  
𝜐𝜐 = (𝑟𝑟𝑟𝑟𝑟𝑟 𝑟 1) ∙ (𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟 1) = (2 𝑟 1) ∙ (2 𝑟 1) = 1, 

where row is the number of rows (in our example row=2), col-
umn is the number of columns (in our example column=2).  

We find the critical value of Pearson chi-square test at 
significance level of p=0.05. We can use statistical tables 
[13,14,15,16] or the MS Excel function, CHIINV (Figure 3).  

At significance level of p=0.05 and number of degrees 
of freedom equal to 1, 𝜒𝜒��(���)

� = 3.8415. 
Let’s plot “the axis of significance” (Figure 4). 

Figure 4. e axis of significance  
 
Since 4.396 > 3.841, the dependence of the arterial hy-

pertension incidence on smoking is statistically significant. 
e significance level of this relationship corresponds to 
p<0.05.  

Cramér’s V-coefficient:  

 𝑉𝑉 = � ��

�∙���(�����,��������) = 0.1712 

Fechner correlation coefficient (𝑟𝑟ф)  
e simplest indicators of strength of association in-

clude the sign correlation coefficient, which was proposed 
by the German physicist, philosopher and psychologist, 
founder of psychophysics, Gustav eodor Fechner (1801-
1887). In his posthumously published collective measure-
ment theory (Kollektivmasslehre, 1897) [24], Fechner in-
troduced the concept of the two-sided Gauss' law 
(Zweiseitige Gauss'sche Gesetz) or two-part normal distri-
bution to account for the asymmetries he observed in em-
pirical frequency distributions in many areas.  

Insignificance area 
Significance area 

 
Figure 3. Calculation of the critical (reference) value of Pearson chi-square test  
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blood pressure. In the second group, arterial hypertension 
was observed in 32 people. us, in the group of smokers, 
normal blood pressure was in 30 people (70 – 40 = 30), and 
in the group of non-smokers, normal blood pressure was 
in 48 people (80 – 32 = 48).”  

Solution. Let's generate a contingency table (Table 6).  
 

Table 6. Fourfold contingency table 2×2  

 
ere is an 

arterial 
hypertension (1) 

ere is no 
arterial 

hypertension (0) 
 

Smokers (1) A=40 B=30 A+B=70 
Non-smokers (0) C=32 D=48 C+D=80 

 A+C=72 B+D=78 A+B+C+D=150 
 

A general overview of the expected values is presented 
in Table 7 according to the formulas in Table 6.  

(𝐴𝐴 𝐴 𝐴𝐴) ∙ (𝐴𝐴 𝐴 𝐴𝐴)
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴

=
70 ∙ 72

150
= 33.6 

(𝐴𝐴 𝐴 𝐴𝐴) ∙ (𝐴𝐴 𝐴 𝐴𝐴)
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴

=
80 ∙ 72

150
= 38.4 

(𝐴𝐴 𝐴 𝐴𝐴) ∙ (𝐴𝐴 𝐴 𝐴𝐴)
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴

=
70 ∙ 78

150
= 36.4 

(𝐴𝐴 𝐴 𝐴𝐴) ∙ (𝐴𝐴 𝐴 𝐴𝐴)
𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴 𝐴 𝐴𝐴

=
80 ∙ 78

150
= 41.6 

Table 7. A general view of the expected values  

 
ere is an 

arterial 
hypertension (1) 

ere is no 
arterial 

hypertension (0) 
 

Smokers (1) 33.6 36.4 70 
Non-smokers (0) 38.4 41.6 80 

 72 78 150 
 

Let’s calculate chi-square test:  

 𝜒𝜒� = ∑ (������)�

���
 = 4.3956 

We determine the number of degrees of freedom  
𝜐𝜐 = (𝑟𝑟𝑟𝑟𝑟𝑟 𝑟 1) ∙ (𝑐𝑐𝑟𝑟𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑟 1) = (2 𝑟 1) ∙ (2 𝑟 1) = 1, 

where row is the number of rows (in our example row=2), col-
umn is the number of columns (in our example column=2).  

We find the critical value of Pearson chi-square test at 
significance level of p=0.05. We can use statistical tables 
[13,14,15,16] or the MS Excel function, CHIINV (Figure 3).  

At significance level of p=0.05 and number of degrees 
of freedom equal to 1, 𝜒𝜒��(���)

� = 3.8415. 
Let’s plot “the axis of significance” (Figure 4). 

Figure 4. e axis of significance  
 
Since 4.396 > 3.841, the dependence of the arterial hy-

pertension incidence on smoking is statistically significant. 
e significance level of this relationship corresponds to 
p<0.05.  

Cramér’s V-coefficient:  

 𝑉𝑉 = � ��

�∙���(�����,��������) = 0.1712 

Fechner correlation coefficient (𝑟𝑟ф)  
e simplest indicators of strength of association in-

clude the sign correlation coefficient, which was proposed 
by the German physicist, philosopher and psychologist, 
founder of psychophysics, Gustav eodor Fechner (1801-
1887). In his posthumously published collective measure-
ment theory (Kollektivmasslehre, 1897) [24], Fechner in-
troduced the concept of the two-sided Gauss' law 
(Zweiseitige Gauss'sche Gesetz) or two-part normal distri-
bution to account for the asymmetries he observed in em-
pirical frequency distributions in many areas.  

Insignificance area 
Significance area 

 
Figure 3. Calculation of the critical (reference) value of Pearson chi-square test  

Fechner correlation coefficient is based on assessing the 
degree of consistency in the directions of deviations in in-
dividual values of factor attribute and resulting attribute 
from the corresponding averages. To calculate it, the aver-
age values of the resulting attribute and factor attribute are 
calculated, and then deviation signs for all values of corre-
lated pairs of attributes are assigned.  

 𝑟𝑟ф = ���
���

 (8) 

where С is the number of coincidences of identical difference 
signs, both positive and negative (𝑥𝑥� − �̅�𝑥) and (𝑦𝑦� − 𝑦𝑦�);  

 H is the number of non-coincided difference signs (𝑥𝑥� − �̅�𝑥) 
and (𝑦𝑦� − 𝑦𝑦�);  

 �̅�𝑥, 𝑦𝑦� are the average values of vectors (samples) 𝑥𝑥�, 𝑦𝑦� .  
 

Like Pearson correlation coefficient, Fechner correla-
tion coefficient may be in the range from –1 to +1. With a 
positive correlation, it has a positive sign, and with a nega-
tive correlation, it has a negative sign.  

When using Fechner correlation coefficient, it should 
be noted that the distribution law of Fechner coefficient is 
unknown. erefore, the question of assessing reliability 
remains.  

Example. Based on the data accumulated on the milk 
fat content for cows at the farm and their 12 daughters of 
the same age (Table 8), we need to determine the relation-
ship between the milk fat content for cows of the maternal 
generation and their offspring of the same age [25].  

 
Table 8. Given data  

Fat percentage in milk 
cows 𝑥𝑥�  daughters 𝑦𝑦�  cows 𝑥𝑥�  daughters 𝑦𝑦�  

3.10 3.65 3.80 3.61 
3.17 3.11 3.65 3.98 
3.76 3.57 3.34 3.36 
3.61 3.61 3.65 3.89 
3.27 3.44 3.45 3.45 
3.61 3.71 4.05 3.79 

 
Solution. 
1. First let’s calculate arithmetic averages of the vectors 

of milk fat content for cows (𝑥𝑥�) and their daughters (𝑦𝑦�).  

�̅�𝑥 = (3.10 + 3.17 + 3.76 + 3.61 + 3.27 + 3.61 + 3.80 + 

+3.65 + 3.34 + 3.65 + 3.45 + 4.05)/12 = 3.5383 

𝑦𝑦� = (3.65 + 3.11 + 3.57 + 3.61 + 3.44 + 3.71 + 3.61 + 

+3.98 + 3.36 + 3.89 + 3.45 + 3.79)/12 = 3.5975 
2. en let's calculate the difference (𝑥𝑥� − �̅�𝑥) and 

(𝑦𝑦� − 𝑦𝑦�); data are presented in Table 9.  
3. We calculate the number of coincided signs C = 10, 

and the number of non-coincided signs H = 2 (highlighted 
in green in Table 9).  

4. Let’s calculate Fechner correlation coefficient  

𝑟𝑟ф =
10 − 2
10 + 2

= 0.6667 

Table 9. Deviations from the average values  

Fat percentage 
in milk 

Deviations from the 
average values 

Signs of deviations 
from the average 

values 

cows 𝑥𝑥�  daughters 
𝑦𝑦�  (𝑥𝑥� − �̅�𝑥) (𝑦𝑦� − 𝑦𝑦�) (𝑥𝑥� − �̅�𝑥) (𝑦𝑦� − 𝑦𝑦�) 

3.10 3.65 –0.4383 0.0525 – + 
3.17 3.11 –0.3683 –0.4875 – – 
3.76 3.57 0.2217 –0.0275 + – 
3.61 3.61 0.0717 0.0125 + + 
3.27 3.44 –0.2683 –0.1575 – – 
3.61 3.71 0.0717 0.1125 + + 
3.80 3.61 0.2617 0.0125 + + 
3.65 3.98 0.1117 0.3825 + + 
3.34 3.36 –0.1983 –0.2375 – – 
3.65 3.89 0.1117 0.2925 + + 
3.45 3.45 –0.0883 –0.1475 – – 
4.05 3.79 0.5117 0.1925 + + 
 

us, it can be stated that there is a moderate associa-
tion between the milk fat content from cows of the mater-
nal generation and their offspring of the same age.  

 
Rank-biserial correlation coefficient (𝑅𝑅��)  
In cases where one variable is measured on a dichoto-

mous scale (variable X), and the other variable is measured 
on a rank scale (variable Y), rank-biserial correlation coef-
ficient is used. Variable X measured on a dichotomous 
scale have only two values (codes), 0 and 1. It should be 
especially emphasized: despite the fact that this coefficient 
varies in the range from –1 to +1, its sign does not matter 
for the interpretation of the results. is is another excep-
tion to the general rule. 

is coefficient is calculated according to the formula:  

 𝑅𝑅�� = (�̅���̅�)∙�
�

 (9) 
where �̅�𝑥�is the average rank for those elements of variable Y that 

correspond to code (attribute) 1 in variable X;  
 �̅�𝑥�is the average rank for those elements of variable Y that 

correspond to code (attribute) 0 in variable X;  
 𝑁𝑁 is the total number of elements in variable X.  

 

Example. A psychologist tests a hypothesis about 
whether there are gender differences in verbal ability.  

Solution. To solve this problem, 15 teenagers of differ-
ent genders were ranked by a literature teacher according 
to the degree of expression of verbal abilities. e data ob-
tained are presented in the form of a table (Table 10).  

In this case, the correctness of the ranking need not be 
checked, since there are no coincided ranks and the rank-
ing is carried out in order. In Table 10, boys are designated 
by code 1 (green), and girls are designated by code 0. In our 
case, there are 9 boys and 6 girls.  

1. Let’s calculate the average rank values separately for 
boys and girls.  

�̅�𝑥� =
1 + 6 + 9 + 7 + 4 + 3 + 5 + 12 + 2

9
=

49
9

= 5.44 

�̅�𝑥� =
10 + 15 + 8 + 13 + 11 + 14

6
=

71
6

= 11.83 
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Table 10. Verbal abilities of teenagers  
No. of the subject Gender Verbal ability ranks 

1 1 1 
2 0 10 
3 1 6 
4 1 9 
5 0 15 
6 1 7 
7 0 8 
8 0 13 
9 1 4 

10 1 3 
11 1 5 
12 0 11 
13 1 12 
14 1 2 
15 0 14 

 
2. Let’s calculate rank-biserial correlation coefficient 

𝑅𝑅�� according to the formula (9):  

𝑅𝑅�� =
(�̅�𝑥� − �̅�𝑥�) ∙ 2

𝑁𝑁
=

(5.44 − 11.83) ∙ 2
15

= −0.852 

3. Let's check the significance of the resulting correla-
tion coefficient using the formula  

 𝑇𝑇� = |𝑅𝑅��| ∙ �
���

�����
�  (10) 

at 𝜐𝜐 = 𝑁𝑁 − 2 = 15 − 2 = 13 (𝜐𝜐 is the degree of freedom 
by which the reference (critical) value is found and com-
pared with the calculated value obtained according to the 
formula (10).  

𝑇𝑇� = |𝑅𝑅��| ∙ �
𝑁𝑁 − 2

1 − 𝑅𝑅��
� = |−0.852| ∙ �

15 − 2
1 − (−0.852)� = 

= 0.852 ∙ � 13
1 − 0.725904

=  0.852 ∙ � 13
0.274096

= 

= 0.852 ∗ 6.88684529674 = 5.87 

In our case, the number of degrees of freedom will be 
equal to υ=13. To calculate the critical (reference) value of 
Student’s test, we can use statistical tables [13,14,15,16] or 
the MS Excel function, TINV (Figures 5 and 6).  

 

 
Figure 5. Calculation of the critical (reference) value of Student’s test at significance level of р<0.05  

 
Figure 6. Calculation of the critical (reference) value of Student’s test at significance level of р<0.01  

 4. e critical (reference) value of Student’s test for 
Р < 0.05 is equal to 𝑡𝑡������ = 2.16 and for Р< 0,01 is equal 
to 𝑡𝑡������ = 3.01. In the accepted notation form it looks 
like this:  

𝑡𝑡������ = �2.16 𝑎𝑎𝑡𝑡 𝑎𝑎 𝑎 0.0𝑎
3.01 𝑎𝑎𝑡𝑡 𝑎𝑎 𝑎 0.01 

5. Let’s plot “the axis of significance” (Figure 7):  

 
Figure 7. e axis of significance  

 

e result is in significance area. erefore, hypothesis 
𝐻𝐻�, according to which the resulting rank-biserial correla-
tion coefficient is significantly different from zero, is ac-
cepted. In other words, in this sample of teenagers, signifi-
cant gender differences were found in the degree of 
expression of verbal abilities.  

To use the rank-biserial correlation coefficient, the fol-
lowing criteria must be met:  

1. e variables being compared must be measured on 
different scales: X on a dichotomous scale; Y on a rank 
scale.  

2. e number of varying attributes in the compared 
variables X and Y must be the same.  

3. To assess the level of reliability of the rank-biserial 
correlation coefficient, we need to use the formula to de-
termine 𝑇𝑇𝑇 and a table of critical values for Student’s t-test 
at 𝜐𝜐 = 𝜐𝜐 𝜐 2.  

Tschuprow contingency coefficient (𝐾𝐾Ч) is calculated ac-
cording to the formula  

 𝐾𝐾Ч = � ��

(����)∙(����) (11) 

where 𝐾𝐾� and 𝐾𝐾� the number of groups in the columns and the 
number of groups in the rows. 

 
e result of assessing the strength of association ob-

tained by Tschuprow contingency coefficient is more accu-
rate, since it takes into account the number of groups for 
each of the studied attributes.  

It is also beneficial to use when there is a greater divi-
sion of population into groups according to correlated at-
tributes. Pearson contingency coefficient is used mainly in 
the case of a square table, while Tschuprow contingency 
coefficient is suitable for measuring association in rectan-
gular tables also.  

It is believed that already with contingency coefficient 
value of 0.3, we can talk about a strong association between 
the variation of the studied attributes.  

Example. Using Tschuprow contingency coefficient, it 
is necessary to determine the strength of association be-

tween the grain yield in agricultural enterprises of the re-
gion and their legal form according to Table 11.  

 
Table 11. Grouping of agricultural enterprises with different grain 
yields according to legal form  

Grain yield, 
dt/ha (𝒙𝒙𝒊𝒊) 

Number 
of enter-
prises, 

units (𝒇𝒇𝒊𝒊𝒊𝒊) 

including 
State 

enterprises 
(𝒇𝒇𝒊𝒊𝒊𝒊) 

collective 
enterprises 

(𝒇𝒇𝒊𝒊𝒊𝒊) 

Farming 
enterprises 

(𝒇𝒇𝒊𝒊𝒊𝒊) 
15.80-18.97 3 2 1 – 
18.97-22.14 4 – 4 – 
22.14-25.31 11 3 8 – 
25.31-28.48 7 1 3 3 
28.48-31.65 4 – 1 3 
31.65-34.82 1 – – 1 

Total: 30 6 17 7 
 
Let's transform the table into more convenient form for 

calculating Tschuprow contingency coefficient (Table 12).  
 

Table 12. Distribution of agricultural enterprises in the region  
by their legal form and level of grain yield  

Group 
of enterprises By grain yield (dt/ha) 

To
ta

l 
Av

er
ag

e y
ie

ld
 

by
 gr

ou
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dt

/h
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By legal form 15.80-
18.97 

18.97-
22.14 

22.14-
25.31 

25.31-
28.48 

28.48-
31.65 

31.65-
34.82   

Average value 
of the range 17.4* 20.6 23.7 26.9 30.1 33.2   

State 
enterprises 2 – 3 1 – – 6 22.14** 

Collective 
enterprises 1 4 8 3 1 – 17 23.54 

Farming 
enterprises – – – 3 3 1 7 29.16 

TOTAL: 3 4 11 7 4 1 30 24.57 

*  ��.����.��
�

= 17.38 ≈ 17.4; ��.���� .��
�

= 20.𝑎𝑎 ≈ 20.6, etc.  

** ��.�∙����.�∙����.�∙�
�

≈ 22.14; ��.�∙����.�∙����.�∙����.�∙����.�∗�
��

≈ 23.𝑎4, 
etc.  

According to the formula  

 𝜑𝜑� = ∑
���

�

����
𝜐 1 (12) 

where 𝐹𝐹� = ∑ 𝑓𝑓��� , 𝐹𝐹� = ∑ 𝑓𝑓���  
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Table 10. Verbal abilities of teenagers  
No. of the subject Gender Verbal ability ranks 

1 1 1 
2 0 10 
3 1 6 
4 1 9 
5 0 15 
6 1 7 
7 0 8 
8 0 13 
9 1 4 

10 1 3 
11 1 5 
12 0 11 
13 1 12 
14 1 2 
15 0 14 

 
2. Let’s calculate rank-biserial correlation coefficient 

𝑅𝑅�� according to the formula (9):  

𝑅𝑅�� =
(�̅�𝑥� − �̅�𝑥�) ∙ 2

𝑁𝑁
=

(5.44 − 11.83) ∙ 2
15

= −0.852 

3. Let's check the significance of the resulting correla-
tion coefficient using the formula  

 𝑇𝑇� = |𝑅𝑅��| ∙ �
���

�����
�  (10) 

at 𝜐𝜐 = 𝑁𝑁 − 2 = 15 − 2 = 13 (𝜐𝜐 is the degree of freedom 
by which the reference (critical) value is found and com-
pared with the calculated value obtained according to the 
formula (10).  

𝑇𝑇� = |𝑅𝑅��| ∙ �
𝑁𝑁 − 2

1 − 𝑅𝑅��
� = |−0.852| ∙ �

15 − 2
1 − (−0.852)� = 

= 0.852 ∙ � 13
1 − 0.725904

=  0.852 ∙ � 13
0.274096

= 

= 0.852 ∗ 6.88684529674 = 5.87 

In our case, the number of degrees of freedom will be 
equal to υ=13. To calculate the critical (reference) value of 
Student’s test, we can use statistical tables [13,14,15,16] or 
the MS Excel function, TINV (Figures 5 and 6).  

 

 
Figure 5. Calculation of the critical (reference) value of Student’s test at significance level of р<0.05  

 
Figure 6. Calculation of the critical (reference) value of Student’s test at significance level of р<0.01  

 4. e critical (reference) value of Student’s test for 
Р < 0.05 is equal to 𝑡𝑡������ = 2.16 and for Р< 0,01 is equal 
to 𝑡𝑡������ = 3.01. In the accepted notation form it looks 
like this:  

𝑡𝑡������ = �2.16 𝑎𝑎𝑡𝑡 𝑎𝑎 𝑎 0.0𝑎
3.01 𝑎𝑎𝑡𝑡 𝑎𝑎 𝑎 0.01 

5. Let’s plot “the axis of significance” (Figure 7):  

 
Figure 7. e axis of significance  

 

e result is in significance area. erefore, hypothesis 
𝐻𝐻�, according to which the resulting rank-biserial correla-
tion coefficient is significantly different from zero, is ac-
cepted. In other words, in this sample of teenagers, signifi-
cant gender differences were found in the degree of 
expression of verbal abilities.  

To use the rank-biserial correlation coefficient, the fol-
lowing criteria must be met:  

1. e variables being compared must be measured on 
different scales: X on a dichotomous scale; Y on a rank 
scale.  

2. e number of varying attributes in the compared 
variables X and Y must be the same.  

3. To assess the level of reliability of the rank-biserial 
correlation coefficient, we need to use the formula to de-
termine 𝑇𝑇𝑇 and a table of critical values for Student’s t-test 
at 𝜐𝜐 = 𝜐𝜐 𝜐 2.  

Tschuprow contingency coefficient (𝐾𝐾Ч) is calculated ac-
cording to the formula  

 𝐾𝐾Ч = � ��

(����)∙(����) (11) 

where 𝐾𝐾� and 𝐾𝐾� the number of groups in the columns and the 
number of groups in the rows. 

 
e result of assessing the strength of association ob-

tained by Tschuprow contingency coefficient is more accu-
rate, since it takes into account the number of groups for 
each of the studied attributes.  

It is also beneficial to use when there is a greater divi-
sion of population into groups according to correlated at-
tributes. Pearson contingency coefficient is used mainly in 
the case of a square table, while Tschuprow contingency 
coefficient is suitable for measuring association in rectan-
gular tables also.  

It is believed that already with contingency coefficient 
value of 0.3, we can talk about a strong association between 
the variation of the studied attributes.  

Example. Using Tschuprow contingency coefficient, it 
is necessary to determine the strength of association be-

tween the grain yield in agricultural enterprises of the re-
gion and their legal form according to Table 11.  

 
Table 11. Grouping of agricultural enterprises with different grain 
yields according to legal form  

Grain yield, 
dt/ha (𝒙𝒙𝒊𝒊) 

Number 
of enter-
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units (𝒇𝒇𝒊𝒊𝒊𝒊) 

including 
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(𝒇𝒇𝒊𝒊𝒊𝒊) 
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(𝒇𝒇𝒊𝒊𝒊𝒊) 

Farming 
enterprises 

(𝒇𝒇𝒊𝒊𝒊𝒊) 
15.80-18.97 3 2 1 – 
18.97-22.14 4 – 4 – 
22.14-25.31 11 3 8 – 
25.31-28.48 7 1 3 3 
28.48-31.65 4 – 1 3 
31.65-34.82 1 – – 1 

Total: 30 6 17 7 
 
Let's transform the table into more convenient form for 

calculating Tschuprow contingency coefficient (Table 12).  
 

Table 12. Distribution of agricultural enterprises in the region  
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State 
enterprises 2 – 3 1 – – 6 22.14** 

Collective 
enterprises 1 4 8 3 1 – 17 23.54 

Farming 
enterprises – – – 3 3 1 7 29.16 

TOTAL: 3 4 11 7 4 1 30 24.57 
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According to the formula 

𝐾𝐾Ч = �
𝜑𝜑�

(𝐾𝐾� − 1) ∙ (𝐾𝐾� − 1)
= �

0.718
(6 − 1) ∙ (3 − 1)

= 0.268 

Tschuprow contingency coefficient is = 0.268. Since this 
value verges towards 0.3, we can talk about the presence of 
a fairly strong association between the yield of grain crops 
and the legal form of enterprises.  

 
Tschuprow correlation coefficient (𝑟𝑟��)  
Tschuprow correlation coefficient (𝑟𝑟��) is calculated us-

ing the following formula:  

 𝑟𝑟�� = ±� ��

��(���)∙(���)
 (13) 

where 𝜒𝜒� is the empirical value of the chi-square test;  
𝑁𝑁 is the sample size (number of objects for which both attributes 

were taken into account);  
𝑎𝑎, 𝑏𝑏 is the number of modalities of both attributes.  
 

e reliability of Tschuprow correlation coefficient is 
assessed by the value of the chi-square test. Chi-square test 
is calculated according to the formula:  

 𝜒𝜒� = ∑ (������)�

���
 (14) 

Number of components added when calculating 𝜒𝜒� is 
equal to the product 𝑎𝑎 × 𝑏𝑏.  

e null hypothesis is that there is no reliable associa-
tion between the variables. If 𝜒𝜒� > 𝜒𝜒�.��� , the null hypoth-
esis is rejected (the association between variables is signif-
icant); if 𝜒𝜒� < 𝜒𝜒�.��� , the null hypothesis is accepted (the 
association between variables is insignificant).  

If it is proven that the association is insignificant, 
Tschuprow correlation coefficient is not calculated and is 
set to 0.  

Example. To establish the association between the 
shape of the glands on the leaf petioles and the degree 
(score) of powdery mildew damage to peach, 1319 culti-
vars were studied. e frequencies of occurrence of peach 
cultivars by combination of modalities of these attributes 
are as follows (Table 13). What is the correlation between 
the shape of the glands on the petioles and powdery mil-
dew in peach?  

 
Table 13. Given data: powdery mildew damage on petioles  

Powdery mildew 
damage 

Shape of the glands 
reniform rounded 

Absent or minor 453 40 
Medium or severe 46 780 

 
Solution. e attribute "shape of the glands" is nominal, 

since the modalities "reniform" and "rounded" cannot be 
ranked. e attribute “powdery mildew damage” can be 
considered as an ordinal attribute, since its states, i.e. “ab-
sent or minor” and “medium or severe” are easily ranked. 
If at least one of the attributes is nominal, then Tschuprow 

correlation coefficient is used to estimate the correlation 
between it and other attributes.  

1. First, we generate a table for frequencies of occur-
rence of cultivars based on the two studied attributes 
(Table 14) and calculate the theoretically expected fre-
quencies, provided that there is no correlation between 
these attributes:  

Empirical and theoretically expected frequencies of oc-
currence of peach cultivars based on the combination of 
modalities “shape of the glands” and “powdery mildew 
damage”, provided that there is no correlation between 
these attributes.  

 
Table 14. Frequency of cultivar occurrence by two attributes  

Powdery mildew 
damage 

Shape of the glands 
Sum reniform rounded 

𝑛𝑛�  𝑛𝑛��  𝑛𝑛�  𝑛𝑛��  
Absent or minor 453 186.51 40 306.49 493 
Medium or severe 46 312.49 780 513.51 826 
TOTAL: 499 820  

𝑛𝑛��� =
499 ∙ 493
1319

= 186.51 

𝑛𝑛��� =
820 ∙ 493
1319

= 306.49 

𝑛𝑛��� =
499 ∙ 826
1319

= 312.49 

𝑛𝑛��� =
820 ∙ 826
1319

= 513.51 

2. Let’s calculate chi-square test value:  

𝜒𝜒� =�
(𝑛𝑛� − 𝑛𝑛��)�

𝑛𝑛��
=
(453 − 186.51)�

186.51
+
(46 − 312.49)�

312.49
+ 

+
(40 − 306.49)�

306.49
+
(780 − 513.51)�

513.51
= 978.04 

3. We find the critical value of Pearson chi-square test 
at significance level of p=0.05 and the degrees of freedom 
equal to 𝜐𝜐 = 2 − 1 = 1. To calculate the critical (refer-
ence) value of Pearson chi-square test, we can use statistical 
tables [13,14,15,16] or the MS Excel function, CHIINV.  

e critical (reference) value of Pearson chi-square test 
at significance level of 𝑝𝑝 = 0.05 and the degrees of free-
dom equal to 𝜐𝜐 = 1 is 3.84 (𝜒𝜒�.��� = 3.84).  
𝜒𝜒� = 978.03 > 𝜒𝜒�.��� = 3.84 

Statistical conclusion: the correlation between powdery 
mildew damage and the shape of the glands is significant.  

4. Let’s calculate Tschuprow correlation coefficient:  

𝑟𝑟�� = ±�
𝜒𝜒�

𝑁𝑁�(𝑎𝑎 − 1) ∙ (𝑏𝑏 − 1)
= ±�

978.04

1319�(2 − 1) ∙ (2 − 1)

= ±√0.7415 = ±0.86 
Conclusion: e correlation between the powdery mil-

dew score and the type of glands is reliable and strong. 
However, it is impossible to establish which variable is an 
argument and which is a function. ough, it may be logi-
cally assumed that the shape of the glands is an independ-
ent variable (argument), and the powdery mildew damage 

is a dependent variable (function). Aer all, it is difficult to 
say that the degree of powdery mildew damage changes the 
cultivar of peaches and the shape of the glands on their 
leaves. Conversely, the assumption that the degree of dam-
age to peach leaves by powdery mildew depends on the 
shape of the leaf glands is reasonable.  

Spearman rank correlation coefficient and other non-
parametric indicators are independent of the distribution 
law, and that is why they are very useful. ey make it pos-
sible to measure the contingency between such attributes 
that cannot be directly measured, but can be expressed by 
points or other conventional units that allow ranking the 
sample. e benefit of rank correlation coefficient also lies 
in the fact that it allows to quickly assess the relationship 
between attributes regardless of the distribution law.  

To determine the strength of association between two 
attributes, each of which consists of only two groups, asso-
ciation coefficient and contingency coefficient are used. 

If there is a relationship between the variation of attrib-
utes, this means their association, or relationship. If the as-
sociation was formed randomly, this means contingency. 
To evaluate association in this case, a number of indicators 
are used.  

To calculate them, Table 15 is generated, which shows 
the association between two phenomena, each of which 
must be alternative, i.e. consisting of two different attribute 
values (for example, a product is good or defective).  

 
Table 15. For calculation of association coefficient and contingency 
coefficient  

a c a+c 
b d b+d 

a+b c+d a+b+c+d 
 

e coefficients are calculated using the formulas:  
Association coefficient: 

 𝐾𝐾� =
�����
�����

 (15) 

Contingency coefficient: 

 𝐾𝐾� =
�����

�(���)∙(���)∙(���)∙(���)
 (16) 

Contingency coefficient is always less than association 
coefficient.  

Association is considered confirmed if  
 𝐾𝐾� ≥ 0.5 or 𝐾𝐾� ≥ 0.3  

Example. We study the association between the partici-
pation of the population of one of the cities in environmen-
tal actions and their level of education. The survey results 
are characterized by the following data (Table 16). Let's de-
fine: 1) association coefficient; 2) contingent coefficient.  

 
Solution. 
1. Example calculation of association coefficient  

𝐾𝐾� =
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏

=
78 ∙ 68 − 22 ∙ 32
78 ∙ 68 + 22 ∙ 32

=
5304 − 704
5304 + 704

=
4600
6008

= 0.7656 

Table 16. Dependence of the participation of the city population 
in environmental actions on educational level  

Groups of workers 
Population 
of the city, 

persons 

among them 

Participants 
in the actions, 

persons 

Not 
participants 

in the actions, 
persons 

With secondary  
education 100 78 22 

Without secondary  
education 100 32 68 

TOTAL: 200 110 90 
 
2. Example calculation of contingency coefficient  

𝐾𝐾� =
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

�(𝑎𝑎 + 𝑏𝑏) ∙ (𝑏𝑏 + 𝑎𝑎) ∙ (𝑎𝑎 + 𝑏𝑏) ∙ (𝑏𝑏 + 𝑎𝑎)

=
78 ∙ 68 − 22 ∙ 32

�(78 + 22) ∙ (22 + 68) ∙ (78 + 32) ∙ (32 + 68)

=
4600

√100 ∙ 90 ∙ 110 ∙ 100
=

4600
√99000000

=
4600

9949.87437106

= 0.4623 

us, there is an association between the participation 
of the city population in environmental actions and its ed-
ucational level.  

When measuring the strength of association between 
qualitative alternative attributes and a continuously vary-
ing quantitative attribute, biserial correlation coefficient 
(𝑟𝑟��) is used. e coefficient is calculated according to the 
formula:  

 𝑟𝑟�� =
�̅���̅�

�
∙ �

��∙��
�∙(���)

 (17) 

where �̅�𝑥� and �̅�𝑥� are the average values for alternative groups;  
 s is the standard deviation;  
 𝑛𝑛� and 𝑛𝑛� are sizes of alternative groups;  
 𝑁𝑁 = (𝑛𝑛� + 𝑛𝑛�) is the total number of observations.  
 

Biserial correlation coefficient varies from –1 to +1; at 
𝑥𝑥� = 𝑥𝑥�, 𝑟𝑟�� = 0. As for association coefficient, the sign of 
biserial coefficient has no meaning.  

Example. We study the effect of tops affected by buck 
eye rot on the yield of “Priekulsky ranny” potato (Table 17). 
It is necessary to determine whether there is a correlation 
between potato yield and tops affected by buck eye rot.  

 
Table 17. Given data  
Yield, kg per bush (𝑿𝑿) 0.7 0.6 0.5 0.4 0.3 0.2 
Number of 
bushes, pcs. 

total (𝒇𝒇) 12 15 18 13 9 6 
incl. affected (𝒇𝒇𝟏𝟏) 0 4 9 10 7 6 

 
Solution. 
1. We generate calculation table (Table 18).  
2. Let’s calculate average values for alternative groups: 

 �̅�𝑥� =
∑ ����
��
���
��

= ��.�
��

= 0.3944; 

 �̅�𝑥� =
∑ ����
��
���
��

= ��.�
��

= 0.5757; 
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is a dependent variable (function). Aer all, it is difficult to 
say that the degree of powdery mildew damage changes the 
cultivar of peaches and the shape of the glands on their 
leaves. Conversely, the assumption that the degree of dam-
age to peach leaves by powdery mildew depends on the 
shape of the leaf glands is reasonable.  

Spearman rank correlation coefficient and other non-
parametric indicators are independent of the distribution 
law, and that is why they are very useful. ey make it pos-
sible to measure the contingency between such attributes 
that cannot be directly measured, but can be expressed by 
points or other conventional units that allow ranking the 
sample. e benefit of rank correlation coefficient also lies 
in the fact that it allows to quickly assess the relationship 
between attributes regardless of the distribution law.  

To determine the strength of association between two 
attributes, each of which consists of only two groups, asso-
ciation coefficient and contingency coefficient are used. 

If there is a relationship between the variation of attrib-
utes, this means their association, or relationship. If the as-
sociation was formed randomly, this means contingency. 
To evaluate association in this case, a number of indicators 
are used.  

To calculate them, Table 15 is generated, which shows 
the association between two phenomena, each of which 
must be alternative, i.e. consisting of two different attribute 
values (for example, a product is good or defective).  

 
Table 15. For calculation of association coefficient and contingency 
coefficient  

a c a+c 
b d b+d 

a+b c+d a+b+c+d 
 

e coefficients are calculated using the formulas:  
Association coefficient: 

 𝐾𝐾� =
�����
�����

 (15) 

Contingency coefficient: 

 𝐾𝐾� =
�����

�(���)∙(���)∙(���)∙(���)
 (16) 

Contingency coefficient is always less than association 
coefficient.  

Association is considered confirmed if  
 𝐾𝐾� ≥ 0.5 or 𝐾𝐾� ≥ 0.3  

Example. We study the association between the partici-
pation of the population of one of the cities in environmen-
tal actions and their level of education. The survey results 
are characterized by the following data (Table 16). Let's de-
fine: 1) association coefficient; 2) contingent coefficient.  

 
Solution. 
1. Example calculation of association coefficient  

𝐾𝐾� =
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏

=
78 ∙ 68 − 22 ∙ 32
78 ∙ 68 + 22 ∙ 32

=
5304 − 704
5304 + 704

=
4600
6008

= 0.7656 

Table 16. Dependence of the participation of the city population 
in environmental actions on educational level  

Groups of workers 
Population 
of the city, 

persons 

among them 

Participants 
in the actions, 

persons 

Not 
participants 

in the actions, 
persons 

With secondary  
education 100 78 22 

Without secondary  
education 100 32 68 

TOTAL: 200 110 90 
 
2. Example calculation of contingency coefficient  

𝐾𝐾� =
𝑎𝑎𝑎𝑎 − 𝑏𝑏𝑏𝑏

�(𝑎𝑎 + 𝑏𝑏) ∙ (𝑏𝑏 + 𝑎𝑎) ∙ (𝑎𝑎 + 𝑏𝑏) ∙ (𝑏𝑏 + 𝑎𝑎)

=
78 ∙ 68 − 22 ∙ 32

�(78 + 22) ∙ (22 + 68) ∙ (78 + 32) ∙ (32 + 68)

=
4600

√100 ∙ 90 ∙ 110 ∙ 100
=

4600
√99000000

=
4600

9949.87437106

= 0.4623 

us, there is an association between the participation 
of the city population in environmental actions and its ed-
ucational level.  

When measuring the strength of association between 
qualitative alternative attributes and a continuously vary-
ing quantitative attribute, biserial correlation coefficient 
(𝑟𝑟��) is used. e coefficient is calculated according to the 
formula:  

 𝑟𝑟�� =
�̅���̅�

�
∙ �

��∙��
�∙(���)

 (17) 

where �̅�𝑥� and �̅�𝑥� are the average values for alternative groups;  
 s is the standard deviation;  
 𝑛𝑛� and 𝑛𝑛� are sizes of alternative groups;  
 𝑁𝑁 = (𝑛𝑛� + 𝑛𝑛�) is the total number of observations.  
 

Biserial correlation coefficient varies from –1 to +1; at 
𝑥𝑥� = 𝑥𝑥�, 𝑟𝑟�� = 0. As for association coefficient, the sign of 
biserial coefficient has no meaning.  

Example. We study the effect of tops affected by buck 
eye rot on the yield of “Priekulsky ranny” potato (Table 17). 
It is necessary to determine whether there is a correlation 
between potato yield and tops affected by buck eye rot.  

 
Table 17. Given data  
Yield, kg per bush (𝑿𝑿) 0.7 0.6 0.5 0.4 0.3 0.2 
Number of 
bushes, pcs. 

total (𝒇𝒇) 12 15 18 13 9 6 
incl. affected (𝒇𝒇𝟏𝟏) 0 4 9 10 7 6 

 
Solution. 
1. We generate calculation table (Table 18).  
2. Let’s calculate average values for alternative groups: 

 �̅�𝑥� =
∑ ����
��
���
��

= ��.�
��

= 0.3944; 

 �̅�𝑥� =
∑ ����
��
���
��

= ��.�
��

= 0.5757; 
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Conclusion: With an increase in the incidence of buck 
eye rot on tops, the yield of “Priekulsky ranny” potatoes 
decreases significantly.

We presented a description of correlation coefficients 
and demonstrated examples of their application, so it is 
interesting to further discuss what grading scales exist for 
interpreting these coefficients.

Thus, we know that Pearson correlation coefficient is in 
the range from –1 to 1. The closer the resulting correlation 
coefficient to –1 or 1, the stronger the association between 
the studied indicators. When assessing the strength of as-
sociation for correlation coefficients, various scales are used.

Chaddock scale
In 1925, the American statistician Robert Emmet Chad-

dock (1879–1940) introduced a scale for Pearson correlation 
coefficient [26]. This scale is the first gradation of correla-
tion strength: 1) 0.1–0.3, poor association; 2) 0.3–0.5, fair 
association; 3) 0.5–0.7, good association; 4) 0.7–0.9, very 
good association.

Cohen scale 1960–1988
In the 1960s, statistician in the field of psychology and 

sociology Jacob Cohen (1923–1998, USA) proposed his “sta-
tistical power” scale for use in cases where the effects were 
small [27].

The power (of a test or research) is influenced by: 1) effect 
size, i. e. the degree of its manifestation; 2) the selected level 
of statistical significance (α, the probability of erroneously 
rejecting the null hypothesis; for us, usually at p <0.05); 
3) size of sample from the general population [28,29].

According to Cohen scale, Pearson correlation coefficient 
has the following gradation: 1) 0.1, small association; 2) 0.3, 
medium association; 3) more than 0.5, large association.

Later, “Cohen’s subjective standards” were brought to the 
logical form of ranges in very few sources [30, 31]: 1) 0.1–0.3, 
small association; 2) 0.3–0.5, medium association; 3) more 
than 0.5, large association.

However, in most sources, Cohen scale is quoted in its 
original form of three values.

Rosenthal scale
In the work by Rosenthal J. A. [32] published in 1996, 

Cohen scale was supplemented with a range of very strong 
association: 1) 0.1 (–0.1), weak association; 2) 0.3 (–0.3), 
moderate association; 3) 0.5 (–0.5), strong association; 4) 0.7 
(–0.7), very strong association.

In modern publications, when using Cohen scale, Rosen-
thal gradation is used [33,34].

Hinkle scale 1979–2003 (versions)
Scale by D. E. Hinkle appears in publications dated 2011 

to 2018 [35,36,37,38]. These publications contain references 
to monographs by Dennis E. Hinkle published by him in 
collaboration with other scientists [39,40] in the period of 
1979–2003.

The following gradings are used in publications: 1) 0–0.3, 
little if any or negligible association; 2) 0.3–0.5, low asso-
ciation; 3) 0.5–0.7, moderate association; 4) 0.7–0.9, high 
or strong association; 5) 0.9–1.0, very high or very strong 
association.

A similar, but somewhat expanded scale is given on the 
website of Andrews University (USA, Michigan) [41]. To the 

Table 18. Calculation table  
𝑿𝑿 𝒇𝒇𝟏𝟏 𝒇𝒇𝟐𝟐 𝒇𝒇 = 𝒇𝒇𝟏𝟏 + 𝒇𝒇𝟐𝟐 𝒇𝒇𝟏𝟏𝑿𝑿 𝒇𝒇𝟐𝟐𝑿𝑿 𝒇𝒇𝑿𝑿 𝑿𝑿𝟐𝟐 𝒇𝒇𝑿𝑿𝟐𝟐 

0,7 0 12 12 0 8.4 8.4 0.49 5.88 
0,6 4 11 15 2.4 6.6 9.0 0.36 5.40 
0,5 9 9 18 4.5 4.5 9.0 0.25 4.50 
0,4 10 3 13 4.0 1.2 5.2 0.16 2.08 
0,3 7 2 9 2.1 0.6 2.7 0.09 0.81 
0,2 6 0 6 1.2 0 1.2 0.04 0.24 

Sum 36 37 73 14.2 21.3 35.5 1.39 18.91 
 

3. Let’s calculate standard deviation:  

𝑠𝑠 = �∑ 𝑓𝑓𝑓𝑓� − (∑ 𝑓𝑓𝑓𝑓)�

𝑁𝑁
𝑁𝑁 − 1

= �18.91 − 35.5�

73
73 − 1

 

= �18.91 − 17.26
72

= √0.0229 = 0.15 

4. Let’s calculate biserial correlation coefficient:  

𝑟𝑟�� =
�̅�𝑥� − �̅�𝑥�

𝑠𝑠
∙ �

𝑛𝑛� ∙ 𝑛𝑛�

𝑁𝑁 ∙ (𝑁𝑁 − 1) = 

=
0.3944 − 0.5757

0.15
∙ �

36 ∙ 37
73 ∙ (73 − 1) =  

−0.1813
0.15

∙ �1332
5256

 
  

=
−0.1813

0.15
∙ �1332

5256
= −1.21 ∙ √0.2534 = −0.6091 

 

5. Let’s calculate biserial correlation coefficient error:  

𝑠𝑠��� = �1 − 𝑟𝑟��
�

𝑁𝑁 − 2
= �1 − (−0.6091)�

73 − 2
= �1 − 0.3710

71
= 

= √0.0089 = 0.094 
6. Let’s calculate the criterion for the significance of bi-

serial correlation coefficient:  

𝑡𝑡� =
𝑟𝑟��

𝑠𝑠���

=
−0.6091

0.094
= −6.48 

Since the sign of the criterion does not have any mean-
ing, we discard it.  

Using a statistical table or using the MS Excel TINV 
function, we find the value of Student’s test at a 5% signif-
icance level and the number of degrees of freedom equal to 
𝜐𝜐 = 𝑁𝑁 − 2 = 73 − 2 = 71. e critical (reference) value 
of Student’s test is 𝑡𝑡�.��  =  1.99.  

e criterion is greater than Student’s test, therefore 
there is a significant correlation between the attributes.  

Conclusion: With an increase in the incidence of buck 
eye rot on tops, the yield of “Priekulsky ranny” potatoes 
decreases significantly.  

We presented a description of correlation coefficients 
and demonstrated examples of their application, so it is in-

teresting to further discuss what grading scales exist for in-
terpreting these coefficients.  

us, we know that Pearson correlation coefficient is in 
the range from –1 to 1. e closer the resulting correlation 
coefficient to –1 or 1, the stronger the association between 
the studied indicators. When assessing the strength of as-
sociation for correlation coefficients, various scales are 
used.  

 
Chaddock scale  
In 1925, the American statistician Robert Emmet 

Chaddock (1879–1940) introduced a scale for Pearson cor-
relation coefficient [26]. is scale is the first gradation of 
correlation strength: 1) 0.1–0.3, poor association; 2) 0.3–
0.5, fair association; 3) 0.5–0.7, good association; 4) 0.7–
0.9, very good association.  

 
Cohen scale 1960-1988  
In the 1960s, statistician in the field of psychology and 

sociology Jacob Cohen (1923–1998, USA) proposed his 
“statistical power” scale for use in cases where the effects 
were small [27].  

The power (of a test or research) is influenced by: 1) effect 
size, i.e. the degree of its manifestation; 2) the selected level of 
statistical significance (α, the probability of erroneously re-
jecting the null hypothesis; for us, usually at p <0.05); 3) size 
of sample from the general population [28,29].  

According to Cohen scale, Pearson correlation coefficient 
has the following gradation: 1) 0.1, small association; 2) 0.3, 
medium association; 3) more than 0.5, large association.  

Later, “Cohen’s subjective standards” were brought to 
the logical form of ranges in very few sources [30,31]: 1) 
0.1–0.3, small association; 2) 0.3–0.5, medium association; 
3) more than 0.5, large association.  

However, in most sources, Cohen scale is quoted in its 
original form of three values.  

 
Rosenthal scale  
In the work by Rosenthal J.A. [32] published in 1996, 

Cohen scale was supplemented with a range of very strong 
association: 1) 0.1 (–0.1), weak association; 2) 0.3 (–0.3), 
moderate association; 3) 0.5 (–0.5), strong association; 4) 
0.7 (–0.7), very strong association. 

In modern publications, when using Cohen scale, 
Rosenthal gradation is used [33,34].  

 
Hinkle scale 1979–2003 (versions)  
Scale by D.E. Hinkle appears in publications dated 2011 

to 2018 [35, 36, 37, 38]. ese publications contain refer-
ences to monographs by Dennis E. Hinkle published by 
him in collaboration with other scientists [39, 40] in the 
period of 1979-2003.  

e following gradings are used in publications: 1) 0-
0.3, little if any or negligible association; 2) 0.3-0.5, low as-
sociation; 3) 0.5-0.7, moderate association; 4) 0.7-0.9, high 
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listed gradations, another association has been added: little 
association, <0.3. Thus, in [41] there are both ‘Little’ (<0.3) 
and ‘Low’ (0.3–0.5) correlation coefficient r values.

The manual “The Basic Practice of Statistics” [42] pro-
poses the following gradation: 1) less than 0.3, very weak 
association; 2) 0.3–0.5, weak association; 3) 0.5–0.7, moder-
ate association; 4) more than 0.7, strong association. Scale 
truncated at both ends by D. E. Hinkle et al. are presented in 
the manual “Statistics for Dummies” [43]: 1) 0.3–0.5, weak 
association; 2) 0.5–0.7, moderate association; 3) more than 
0.7, strong association.

Evans scale
In 1996, the monograph by James D. Evans “Straightfor-

ward statistics for the behavioral sciences” [44] was pub-
lished in the USA, in which another effect size scale was 
proposed. The scale is made by dividing the range of 0 to 1.0 
into equal segments and does not provide for an insignificant 
correlation. This scale is used in publications (2012–2019) 
on psychology [35,45,46,47,48], programming [49], and a 
textbook on statistics [50]. The gradation of this scale is as 
follows: 1) 0–0.19, very weak association; 2) 0.2–0.39, weak 
association; 3) 0.40–0.59, moderate association; 4) 0.6–0.79, 
strong association; 5) 0.80–1.0, very strong association.

All given scales are used for grading Pearson correlation 
coefficient. To grade other coefficients (Spearman coefficient, 
Kendall coefficient, Cramér’s coefficient, etc.), a search for 
publications in the ScienceDirect and PubMed systems gave 
the following information. The manual “Statistics without 
Maths for Psychology” [51] uses an original scale for grad-
ing Spearman correlation coefficient. The article [36] uses 

Hinkle scale for Spearman correlation coefficient. The review 
article [52] presents the original grading scale for Spearman 
coefficient, Kendall coefficient, Phi coefficient, Cramer’s 
V-coefficient, and concordance correlation coefficient (CCC).

The study [53] presents a detailed overview of the effect 
size grading for Hill yield criterion “strength of association” 
according to the correlation coefficient value parameter. 
Koterov et al. [53] analyzed 121 sources and collected informa-
tion on 19 scales. They note that Chaddock scale from 1925 
is not currently used abroad, but is widely represented in 
the countries of the former USSR. The most well-recognized 
grading scales for the correlation coefficient, to which there 
are many references, are Cohen scale, scale by D. E. Hinkle 
et al., Evans scale. Along with this, it is noted that there are 
a number of scales by other authors published once both in 
educational material (including on-line), in publications, 
and even in manuals or monographs. Quotations from such 
sources were rare, and in most cases simply absent.

Conclusion
In the third part of the article “Nonparametric Statistics”, 

Spearman correlation coefficient, Kendall correlation coef-
ficient, phi (Yule) correlation coefficient, Cramér’s coefficient, 
Matthews coefficient, Fechner coefficient, Tschuprow coef-
ficient, rank-biserial correlation coefficient, point-biserial 
correlation coefficient, as well as association coefficient and 
contingent coefficient were reviewed. Scales for grading the 
strength of association for correlation coefficients are given, 
both widely known and widely used, and those found in 
individual publications. Examples of calculating correlation 
coefficients and explanations are given.
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