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Introduction
German philosopher, psychologist and teacher Johann 

Friedrich Herbart at the beginning of the 19th century 
wrote: “Any theory trying to be consistent with experience, 
first of all, must be continued until it accepts quantitative 
determinations that arise in experience or lie in its foun-
dation. If not, it hangs in the air, exposed to every wind 
of doubt and being unable to contact with other, already 
strengthened opinions”.

Thus, the researcher, having received data during the 
experiment, must process them correctly using mathe-
matical methods in order to draw a correct and reasonable 
conclusion.

As a rule, researchers use methods of parametric statis-
tics, which is not always correct. Many parametric meth-
ods have direct analogues in nonparametric statistics. For 
example, Student test and analysis of variance determine 
the significance of differences in mean values for two or 
more groups; and Mann-Whitney U-test determines the 
significance of differences in the average rank for two 
groups; Pearson’s correlation coefficient allows determin-
ing the linear relationship between two numerical indi-
cators; and Spearman rank correlation coefficient allows 

determining linear relationship between the ranks of two 
indicators. In some cases, there is no direct analogy with 
nonparametric method.

Nonparametric methods of mathematical statistics do 
not require knowledge of the functional form for the theo-
retical distribution. The name “nonparametric methods” 
itself emphasizes their difference from classical (paramet-
ric) methods, in which it is assumed that the unknown the-
oretical distribution belongs to some family that depends 
on a finite number of parameters (for example, the fam-
ily of normal distributions), and which allow estimating 
unknown values of these parameters based on the results 
of observations and testing certain hypotheses regarding 
their values [1].

Common characteristics for most nonparametric meth-
ods [2,3] are: 1) fewer assumptions about the type of distri-
bution; 2) the sample size is less strict; 3) the measurement 
may be nominal or ordinal; 4) independence of randomly 
selected observations, except for paired ones; 5) the focus is 
on the ranking order or data frequency; 6) hypotheses are 
expressed regarding the ranks, medians or data frequency.

Based on the practice of statistical data analysis, there 
are three main spheres of nonparametric statistics [4]:
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• sphere at the junction of parametric and nonparametric 
methods;

• rank statistical methods;
• nonparametric estimates for functions, primarily dis-

tribution density, regression dependence, as well as sta-
tistics used in classification theory.
In the first part of the article [5], a review of simple 

nonparametric methods is given. Two groups of non-
parametric tests are considered: 1)  to identify differ-
ences in the indicator distribution (Rosenbaum Q-test, 
Mann-Whitney U-test); 2)  estimates of the significance 
for shift in the values of the studied indicator (sign G-test, 
 Wilcoxon T-test).

In the second part of the article, nonparametric tests 
for testing hypotheses of distribution type (Pearson’s chi-
squared test, Kolmogorov test) and nonparametric tests for 
testing hypotheses of homogeneity (Pearson’s chi-squared 
test for homogeneity, Kolmogorov-Smirnov test) are con-
sidered.

The purpose of the article is to give a working tool 
for solving specific research and applied problems using 
methods of nonparametric statistics.

Materials and methods
The materials of the study are recent publications in the 

statistical analysis of which methods of nonparametric sta-
tistics are used, i. e. goodness-of-fit tests (Kolmogorov test, 
Kolmogorov-Smirnov test, Pearson’s chi-squared test).

Goodness-of-fit tests
It is known that one of the most important tasks for 

mathematical statistics is the establishment of a theoreti-
cal law of distribution for a random variable characteriz-
ing the studied indicator, based on empirical distribution. 
The solution of this problem allows: 1) choosing the right 
method of statistical data processing; 2) determining the 
type of model that describes the relationship between the 
analyzed indicators.

Goodness-of-fit tests are used to check the agreement 
between the experimental data and the theoretical model. 
So, goodness-of-fit test is a test for testing a hypothesis 
about an assumed distribution law [6].

The researcher states two hypotheses: null hypothesis 
(H0) and alternative hypothesis (H1). Next, the hypotheses 
are tested using various tests.

H0: The resulting empirical indicator distribution does 
not differ from the theoretical distribution (normal, uni-
form, exponential, etc.).

H1: The resulting empirical distribution of the indicator 
differs from the theoretical distribution.

To test the null hypothesis H0, some random variable U 
is chosen, which characterizes the disagreement between 
the theoretical and empirical distributions, the distribu-
tion law for which is known, for sufficiently large n, and 
almost does not depend on the distribution law for the 
random variable X.

When knowing the distribution law of the random 
variable U, a critical value Uα can be found, at which the 
null hypothesis H0 is true, as well as the probability that 
the random variable U assumes a value greater than Uα, 
i. e. the function P(U > Uα) = α is small, where α is the test 
significance level.

If the value observed in the experiment Ui = U > Uα, 
i. e. it falls into the critical region, this means that such 
large U values are practically impossible and contra-
dict the hypothesis H0. In this case, the hypothesis H0 is 
 rejected.

If Ui = U ≤ Uα, then the difference between the empiri-
cal and theoretical distributions is insignificant, and the 
hypothesis H0 may be considered as not contradicting the 
experimental data.

In this case, the researcher can make two types of 
 errors when testing hypotheses: type I error and type II 
error [6].

Type I error. If we reject the null hypothesis H0 (i. e., we 
consider the null hypothesis H0 is false), while in fact the 
null hypothesis H0 is true, then the researcher makes an 
error consisting in the incorrect rejection of the null hy-
pothesis.

Type II error. If we accept the null hypothesis H0 (i. e., 
we do not agree with the alternative hypothesis H1), while 
in fact the null hypothesis H0 is false, then the researcher 
makes an error consisting in incorrect acceptance of the 
null hypothesis.

It is worth noting that the probability of making a type 
I error is established quite easily, because it is equal to α, 
while for type II errors, it must be specially calculated.

Pearson’s goodness-of-fit test  
or Pearson’s chi-squared test
Pearson’s goodness-of-fit test (or Pearson’s chi-squared 

test) is the most commonly used to test the hypothesis that 
a certain sample belongs to a theoretical distribution law 
[7,8].

Given data for the problem: let there be a sample of val-
ues for a random variable X with size n: x1, x2, ..., xk and 
a set of corresponding frequencies m1, m2, ..., mk (k is the 
number of partition intervals). As a measure of difference 
between the empirical and theoretical distributions, the 
value χ2 is taken, which is equal to the sum of the squared 
deviations of the relative frequencies 

mi
n  from the prob-

abilities pi calculated from the assumed distribution and 
taken with a certain coefficient ci:
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relative frequencies ��

�
 from the probabilities 𝑝𝑝� calculated from the assumed distribution and 

taken with a certain coefficient 𝑐𝑐�:  

𝜒𝜒� = ∑ 𝑐𝑐�
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��� ���

�
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�
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The coefficient 𝑐𝑐� is chosen in such a way that for the same deviations ���
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− 𝑝𝑝��
�
, the 

deviations at which 𝑝𝑝� is small have more weight, and the deviations at which 𝑝𝑝� is large have 
less weight. Therefore, �

��
 ratio is taken as 𝑐𝑐�. We obtain the measure of difference of the 

following form:  
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 (2) 
so that, with 𝑛𝑛 → ∞, the sample distribution of 𝜒𝜒� tends to the limit distribution of 𝜒𝜒� with 

the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1, where r is the number of parameters of the 
hypothetical probability distribution estimated from the sample data. Numbers 𝑚𝑚� and 𝑚𝑚�

�����are 
called empirical and theoretical frequencies, respectively.  

 
Application of Pearson’s chi-squared test  
1. The measure of difference between empirical and theoretical frequencies is determined by 

the formula (2) and the experimental value of the test is calculated. 
2. For the chosen significance level 𝛼𝛼, using the table of 𝜒𝜒� distributions, the critical value 

𝜒𝜒��
�  is found with the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1. 

3. If the experimental value 𝜒𝜒���
�  is greater than the critical value, i.e. 𝜒𝜒���

�   𝜒𝜒��
� , then the null 

hypothesis 𝐻𝐻� is rejected; and if 𝜒𝜒���
�  < 𝜒𝜒��

� , the null hypothesis 𝐻𝐻� does not contradict the 
experimental data.  

Limitations of Pearson’s chi-squared test  
1. Sample size must be large enough: 𝑛𝑛  30.  
2. The theoretical frequency for each cell should not be less than 5.  
3. The selected ranks should cover the entire range of the indicator's variability. Classification 

into ranks should be the same in all compared distributions.  
4. Ranks should be non-overlapping.  
 
Testing the hypothesis about the normal distribution of the general population  
1. Based on a sample of size 𝑛𝑛, arrange the interval statistical array by classification of the 

given data into k ranges [𝑎𝑎�; 𝑎𝑎���) with the corresponding frequencies 𝑚𝑚�. Rearrange interval 

, (2)

so that, with n  ∞, the sample distribution of χ2 tends to 
the limit distribution of χ2 with the number of degrees of 
freedom v = k – r – 1, where r is the number of parameters 
of the hypothetical probability distribution estimated from 
the sample data. Numbers mi and mi

theor are called empirical 
and theoretical frequencies, respectively.

Application of Pearson’s chi-squared test
1. The measure of difference between empirical and theo-

retical frequencies is determined by the formula (2) and 
the experimental value of the test is calculated.

2. For the chosen significance level α, using the table of 
χ2 distributions, the critical value χ2

cr is found with the 
number of degrees of freedom v = k – r – 1.

3. If the experimental value χ2
exp is greater than the criti-

cal value, i.  e. χ2
exp ≥ χ2

cr, then the null hypothesis H0 is 
rejected; and if χ2

exp < χ2
cr, the null hypothesis H0 does not 

contradict the experimental data.
Limitations of Pearson’s chi-squared test

1. Sample size must be large enough: n ≥ 30.
2. The theoretical frequency for each cell should not be 

less than 5.
3. The selected ranks should cover the entire range of the 

indicator’s variability. Classification into ranks should 
be the same in all compared distributions.

4. Ranks should be non-overlapping.

Testing the hypothesis about the normal distribution 
of the general population

1. Based on a sample of size n, arrange the interval sta-
tistical array by classification of the given data into k 
ranges [ai; ai + 1) with the corresponding frequencies mi. 
Rearrange interval statistical array into statistical array 
by replacing each range [ai;  ai + 1) with its mean value: 

xi = 
ai + ai + 1

2
. Now we have Table 1.

Table 1. Interval statistical array
Ranges for observed values 

of a random variable Х [a1; a2) [a2; a3) ... [ai; ai+1) [ak; ak+1)

Frequencies mi m1 m2 ... mi mk

Mean value xi x1 x2 ... xi xk

2. Using Table 1, calculate mathematical expectation esti-
mate x and sample standard deviation σv.

3. Calculate zi = 
ai – x
σв

, i = 2, 3, ..., k, where ai is the left end 

of the ith range. Set value z1 equal to minus ∞, and value 
zk + 1 equal to plus ∞.

4. Assuming a normal distribution of the general popula-
tion, determine the theoretical frequencies m1

theor, m2
theor, 

…, mk
theor by the formula:

 mi
theor = n . pi

where  = Ф (zi + 1) – Ф(zi) is the probability of a random vari-
able X to fall within the range [ai; ai + 1); Ф(x) is the cumula-
tive Laplace distribution function.

5. Calculate χ2
exp by the formula:

 χ2
exp = 

4 
 

Pearson’s goodness-of-fit test or Pearson’s chi-squared test 
Pearson's goodness-of-fit test (or Pearson's chi-squared test) is the most commonly used to 

test the hypothesis that a certain sample belongs to a theoretical distribution law [7,8].  
Given data for the problem: let there be a sample of values for a random variable X with size 

𝑛𝑛: 𝑥𝑥�, 𝑥𝑥�, . . . , 𝑥𝑥� and a set of corresponding frequencies 𝑚𝑚�, 𝑚𝑚�, . . . 𝑚𝑚� (k is the number of 
partition intervals). As a measure of difference between the empirical and theoretical 
distributions, the value 𝜒𝜒� is taken, which is equal to the sum of the squared deviations of the 
relative frequencies ��

�
 from the probabilities 𝑝𝑝� calculated from the assumed distribution and 

taken with a certain coefficient 𝑐𝑐�:  

𝜒𝜒� = ∑ 𝑐𝑐�
�
��� ���

�
− 𝑝𝑝��

�
      (1) 

  

The coefficient 𝑐𝑐� is chosen in such a way that for the same deviations ���
�

− 𝑝𝑝��
�
, the 

deviations at which 𝑝𝑝� is small have more weight, and the deviations at which 𝑝𝑝� is large have 
less weight. Therefore, �

��
 ratio is taken as 𝑐𝑐�. We obtain the measure of difference of the 

following form:  

𝜒𝜒� = ∑ �
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 (2) 
so that, with 𝑛𝑛 → ∞, the sample distribution of 𝜒𝜒� tends to the limit distribution of 𝜒𝜒� with 

the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1, where r is the number of parameters of the 
hypothetical probability distribution estimated from the sample data. Numbers 𝑚𝑚� and 𝑚𝑚�

�����are 
called empirical and theoretical frequencies, respectively.  

 
Application of Pearson’s chi-squared test  
1. The measure of difference between empirical and theoretical frequencies is determined by 

the formula (2) and the experimental value of the test is calculated. 
2. For the chosen significance level 𝛼𝛼, using the table of 𝜒𝜒� distributions, the critical value 

𝜒𝜒��
�  is found with the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1. 

3. If the experimental value 𝜒𝜒���
�  is greater than the critical value, i.e. 𝜒𝜒���

�   𝜒𝜒��
� , then the null 

hypothesis 𝐻𝐻� is rejected; and if 𝜒𝜒���
�  < 𝜒𝜒��

� , the null hypothesis 𝐻𝐻� does not contradict the 
experimental data.  

Limitations of Pearson’s chi-squared test  
1. Sample size must be large enough: 𝑛𝑛  30.  
2. The theoretical frequency for each cell should not be less than 5.  
3. The selected ranks should cover the entire range of the indicator's variability. Classification 

into ranks should be the same in all compared distributions.  
4. Ranks should be non-overlapping.  
 
Testing the hypothesis about the normal distribution of the general population  
1. Based on a sample of size 𝑛𝑛, arrange the interval statistical array by classification of the 

given data into k ranges [𝑎𝑎�; 𝑎𝑎���) with the corresponding frequencies 𝑚𝑚�. Rearrange interval 
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Pearson’s goodness-of-fit test or Pearson’s chi-squared test 
Pearson's goodness-of-fit test (or Pearson's chi-squared test) is the most commonly used to 

test the hypothesis that a certain sample belongs to a theoretical distribution law [7,8].  
Given data for the problem: let there be a sample of values for a random variable X with size 

𝑛𝑛: 𝑥𝑥�, 𝑥𝑥�, . . . , 𝑥𝑥� and a set of corresponding frequencies 𝑚𝑚�, 𝑚𝑚�, . . . 𝑚𝑚� (k is the number of 
partition intervals). As a measure of difference between the empirical and theoretical 
distributions, the value 𝜒𝜒� is taken, which is equal to the sum of the squared deviations of the 
relative frequencies ��

�
 from the probabilities 𝑝𝑝� calculated from the assumed distribution and 

taken with a certain coefficient 𝑐𝑐�:  
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The coefficient 𝑐𝑐� is chosen in such a way that for the same deviations ���
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deviations at which 𝑝𝑝� is small have more weight, and the deviations at which 𝑝𝑝� is large have 
less weight. Therefore, �
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 ratio is taken as 𝑐𝑐�. We obtain the measure of difference of the 

following form:  
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 (2) 
so that, with 𝑛𝑛 → ∞, the sample distribution of 𝜒𝜒� tends to the limit distribution of 𝜒𝜒� with 

the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1, where r is the number of parameters of the 
hypothetical probability distribution estimated from the sample data. Numbers 𝑚𝑚� and 𝑚𝑚�

�����are 
called empirical and theoretical frequencies, respectively.  

 
Application of Pearson’s chi-squared test  
1. The measure of difference between empirical and theoretical frequencies is determined by 

the formula (2) and the experimental value of the test is calculated. 
2. For the chosen significance level 𝛼𝛼, using the table of 𝜒𝜒� distributions, the critical value 

𝜒𝜒��
�  is found with the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1. 

3. If the experimental value 𝜒𝜒���
�  is greater than the critical value, i.e. 𝜒𝜒���

�   𝜒𝜒��
� , then the null 

hypothesis 𝐻𝐻� is rejected; and if 𝜒𝜒���
�  < 𝜒𝜒��

� , the null hypothesis 𝐻𝐻� does not contradict the 
experimental data.  

Limitations of Pearson’s chi-squared test  
1. Sample size must be large enough: 𝑛𝑛  30.  
2. The theoretical frequency for each cell should not be less than 5.  
3. The selected ranks should cover the entire range of the indicator's variability. Classification 

into ranks should be the same in all compared distributions.  
4. Ranks should be non-overlapping.  
 
Testing the hypothesis about the normal distribution of the general population  
1. Based on a sample of size 𝑛𝑛, arrange the interval statistical array by classification of the 

given data into k ranges [𝑎𝑎�; 𝑎𝑎���) with the corresponding frequencies 𝑚𝑚�. Rearrange interval 

 (3)

or
(4)
6. Using the table, calculate [9,10,11,12], considering the 

given level of significance and the number of degrees of 
freedom.

7. Compare.
If <, there is no reason to reject the hypothesis about the 

normal distribution of the general population.
If ≥, the hypothesis about the normal distribution of the 

general population should be rejected.
Testing the hypothesis about the distribution of a ran-

dom variable according to a uniform law
1. Group the sample data by arranging them as a se-

quence k of the ranges and their corresponding frequen-
cies,,,.

2. From a given variational array, calculate the prob-
abilities of Х to fall within the range by the formula:

(5)
3. Calculate theoretical frequencies by the formula:
where n is sample size.
4. Calculate by the formula (4).
5. For given significance level and the number of de-

grees of freedom, calculate using the table [9,10,11,12].
6. Compare.
If <, there is no reason to reject the hypothesis of uni-

form distribution of X within the range [a; b].
If ≥, then the hypothesis of uniform distribution should 

be rejected.
Example 1. 48 cows were examined for deviations of 

the annual milk yield from the average. Grouped data are 
given in Table 2.

Table 2. Given data for the problem
Annual milk yield, kg 0÷1000 1000÷2000 2000÷3000 3000÷4000 4000÷5000

Number of cows, animals 2 8 23 13 2
Evaluate the hypothesis about the normal distribution 

of the general population at a significance level α ≤ 0.05 
with Pearson’s chi-squared test.

Solution. Let’s rearrange interval statistical array into 
statistical array by replacing each range with its mean val-
ue. Now we have Table 3.

Table 3. Statistical array
500 1500 2500 3500 4500
2 8 23 13 2

Using Table 3, let’s calculate mathematical expectation 
estimate and sample standard deviation.

Mathematical expectation:
= =;
Sample variance
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so that, with 𝑛𝑛 → ∞, the sample distribution of 𝜒𝜒� tends to 
the limit distribution of 𝜒𝜒� with the number of degrees of 
freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1, where r is the number of param-
eters of the hypothetical probability distribution estimated 
from the sample data. Numbers 𝑚𝑚� and 𝑚𝑚�

�����are called 
empirical and theoretical frequencies, respectively.  

 
Application of Pearson’s chi-squared test  
1. The measure of difference between empirical and 

theoretical frequencies is determined by the formula (2) 
and the experimental value of the test is calculated. 

2. For the chosen significance level 𝛼𝛼, using the table of 
𝜒𝜒� distributions, the critical value 𝜒𝜒��

�  is found with the 
number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1. 

3. If the experimental value 𝜒𝜒���
�  is greater than the crit-

ical value, i.e. 𝜒𝜒���
�   𝜒𝜒��

� , then the null hypothesis 𝐻𝐻� is 
rejected; and if 𝜒𝜒���

�  < 𝜒𝜒��
� , the null hypothesis 𝐻𝐻� does not 

contradict the experimental data.  
Limitations of Pearson’s chi-squared test  
1. Sample size must be large enough: 𝑛𝑛  30.  
2. The theoretical frequency for each cell should not 

be less than 5.  
3. The selected ranks should cover the entire range of 

the indicator's variability. Classification into ranks should 
be the same in all compared distributions.  

4. Ranks should be non-overlapping.  
 
Testing the hypothesis about the normal  
distribution of the general population  
1. Based on a sample of size 𝑛𝑛, arrange the interval sta-

tistical array by classification of the given data into k 
ranges [𝑎𝑎�; 𝑎𝑎���) with the corresponding frequencies 𝑚𝑚�. 
Rearrange interval statistical array into statistical array by 
replacing each range [𝑎𝑎�; 𝑎𝑎���) with its mean value: 𝑥𝑥� =
�������

�
. Now we have Table 1.  

 
Table 1. Interval statistical array  

Ranges  
for observed 

values of a ran-
dom variable Х 

[𝒂𝒂𝟏𝟏; 𝒂𝒂𝟐𝟐) [𝒂𝒂𝟐𝟐; 𝒂𝒂𝟑𝟑) … [𝒂𝒂𝒊𝒊; 𝒂𝒂𝒊𝒊�𝟏𝟏) [𝒂𝒂𝒌𝒌; 𝒂𝒂𝒌𝒌�𝟏𝟏) 

Frequencies 𝒎𝒎𝒊𝒊 𝒎𝒎𝟏𝟏 𝒎𝒎𝟐𝟐 … 𝒎𝒎𝒊𝒊 𝒎𝒎𝒌𝒌 

Mean value 𝒙𝒙𝒊𝒊 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 … 𝒙𝒙𝒊𝒊 𝒙𝒙𝒌𝒌 

 
2. Using Table 1, calculate mathematical expectation 

estimate 𝑥𝑥 and sample standard deviation 𝜎𝜎�. 

3. Calculate 
в

i
i

xaz



 , 𝑖𝑖 = 2,3, . . . 𝑘𝑘����������, where 𝑎𝑎�  is the 

left end of the ith range. Set value 𝑧𝑧� equal to minus ∞, and 
value 𝑧𝑧��� equal to plus ∞. 

4. Assuming a normal distribution of the general pop-
ulation, determine the theoretical frequencies 𝑚𝑚�

�����, 
𝑚𝑚�

�����, …, 𝑚𝑚�
����� by the formula: 

𝑚𝑚�
����� = 𝑛𝑛 ∙ 𝑝𝑝�, 

where 𝑝𝑝� = 𝛷𝛷(𝑧𝑧���) − 𝛷𝛷(𝑧𝑧�) is the probability of a ran-
dom variable X to fall within the range [𝑎𝑎�; 𝑎𝑎���); 𝛷𝛷(𝑥𝑥) is 
the cumulative Laplace distribution function.  

5. Calculate 𝜒𝜒���
�  by the formula: 

 𝜒𝜒���
� = ∑ ������

������
�
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�����

�
���   (3) 

or 
 𝜒𝜒���

� = ∑ ��
�

��
�����

�
��� − 𝑛𝑛  (4) 

6. Using the table, calculate 𝜒𝜒��
�  [9,10,11,12], consider-

ing the given level of significance 𝛼𝛼 and the number of de-
grees of freedom 𝑣𝑣 = 𝑘𝑘 − 3. 

7. Compare 𝜒𝜒���
�  and 𝜒𝜒��

� . 
If 𝜒𝜒���

�  < 𝜒𝜒��
� , there is no reason to reject the hypothesis 

about the normal distribution of the general population. 
If 𝜒𝜒���

�   𝜒𝜒��
� , the hypothesis about the normal distri-

bution of the general population should be rejected. 
 
Testing the hypothesis about the distribution  
of a random variable according to a uniform law  
1. Group the sample data by arranging them as a se-

quence k of the ranges [𝑎𝑎�; 𝑎𝑎���) and their corresponding 
frequencies 𝑚𝑚�, 𝑖𝑖 = 1, . . . , 𝑘𝑘���������, 𝑎𝑎� = 𝑎𝑎, 𝑎𝑎��� = 𝑏𝑏. 

2. From a given variational array, calculate the proba-
bilities 𝑝𝑝�  of Х to fall within the range by the formula: 

 𝑝𝑝� = 𝑃𝑃(𝑎𝑎� < 𝑋𝑋 < 𝑎𝑎���) = �������
���

 (5) 

3. Calculate theoretical frequencies by the formula: 
𝑚𝑚�

����� = 𝑛𝑛 ∙ 𝑝𝑝�, 
where n is sample size.  

4. Calculate 𝜒𝜒���
�  by the formula (4).  

5. For given significance level 𝛼𝛼 and the number of de-
grees of freedom 𝑣𝑣 = 𝑘𝑘 − 1, calculate 𝜒𝜒��

�  using the table 
[9,10,11,12].  

6. Compare 𝜒𝜒���
�  and 𝜒𝜒��

� .  
If 𝜒𝜒���

�  < 𝜒𝜒��
� , there is no reason to reject the hypothesis 

of uniform distribution of X within the range [a; b].  
If 𝜒𝜒���

�   𝜒𝜒��
� , then the hypothesis of uniform distribu-

tion should be rejected.  
 
Example 1. 48 cows were examined for deviations of 

the annual milk yield from the average. Grouped data are 
given in Table 2.  
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= =;
Sample standard deviation
.
Let’s calculate, the probability of a random variable X to 

fall within the range; is the cumulative Laplace distribution 
function, 

â

i
i

xaz
σ
−

= .
Let’s calculate by the formula and complete Table 4.
Table 4. Calculation results

№ 
1 500 2 4 0.0329 1.5792 2.532928
2 1500 8 64 0.2122 10.1856 6.28338
3 2500 23 529 0.4285 20.568 25.71956
4 3500 13 169 0.2716 13.0368 12.9633
5 4500 2 4 0.0548 2.6304 1.520681

48 1 48 49.01986
Using the table [9, 10, 11, 12], for α ≤ 0.05 and let’s de-

termine
Let’s plot the axis of significance:
Since 1.02 < 6 (<), hypothesis about the normal distri-

bution of the general population should be accepted.
Example 2. In some areas, the distribution of cows by 

live weight was recorded. Grouped data are given in Table 
5.

Table 5. Given data for the problem
Live weight, kg 400÷420 420÷440 440÷460 460÷480 480÷500
Livestock, animals 12 39 88 82 86

Evaluate the hypothesis about the normal distribution 
of the general population at a significance level α ≤ 0.05 
with Pearson’s chi-squared test.

Solution. Let’s rearrange interval statistical array into 
statistical array by replacing each range with its mean val-
ue. Now we have Table 6.

Table 6. Statistical array
410 430 450 470 490
12 39 88 82 86

Using Table 6, let’s calculate mathematical expectation 
estimate and sample standard deviation.

Mathematical expectation:
= =;
Sample variance
= =;
Sample standard deviation
.
Let’s calculate, the probability of a random variable X to 

fall within the range; is the cumulative Laplace distribution 
function, 

â

i
i

xaz
σ
−

= .
Let’s calculate by the formula and complete Table 7.
Table 7. Calculation results

№ 
1 410 12 144 0.0307 9.4249 15.2786767
2 430 39 1521 0.1304 40.0328 37.99384505
3 450 88 7744 0.2991 91.8237 84.33552558
4 470 82 6724 0.3192 97.9944 68.61616582

5 490 86 7396 0.2206 67.7242 109.2076392
307 1 307 315.432

Using Table [9, 10, 11, 12], for α ≤ 0.05 and let’s deter-
mine

Let’s plot the axis of significance:
Since 8.43 > 6 (when accepting the null hypothesis, it 

should be <), hypothesis about the normal distribution of 
the general population should be rejected.

Using the example of research in various fields, we will 
show the application of Pearson’s goodness-of-fit test. The 
article [15] shows the applicability of target hazard quo-
tient (THQ) estimates for communicating the danger of 
seafood due to metal contamination. The food recall data 
set was collected by the Laboratory of government chem-
ists (LGC, UK) between January and November 2007. For 
example, seafood products originating in only 3 coun-
tries were recalled more than 10 times due to metal con-
tamination (Spain, 50 times; France, 11 times; Indonesia, 
11 times). Products containing swordfish and sharks have 
been recalled more than 10 times, mostly due to mercury 
contamination. Based on the food alert/recall system, the 
application of THQ risk assessment in cases of seafood 
contamination with metals is questionable, as THQ implies 
frequent (or even daily) lifetime exposure. Infrequent re-
calls due to metal contamination and lack of trend make it 
highly unlikely that a person would be exposed to repeated 
significant levels of metal ions in seafood. Pearson’s good-
ness-of-fit chi-squared test, nonparametric correlation 
(Kendall’s tau) and Kruskal-Wallis test were used to con-
firm the hypothesis and perform statistical processing. The 
work [16] shows a study of perception, belief and behavior 
in relation to nutritional and complementary practices in 
inflammatory bowel disease (IBD). 80 patients with IBD 
completed a closed-ended 16-item questionnaire that was 
divided into three subsections: 1)  baseline/demographic 
characteristics; 2)  disease characteristics; 3)  dietary and 
complementary beliefs and behaviors. One-sample chi-
squared goodness-of-fit tests were used for each question, 
and two-sided Pearson’s chi-squared tests of independence 
were used for testing differences in response to each ques-
tion between baseline/demographic variables.

The processing time of 1.0 cm, 1.5 cm and 2.0 cm po-
tato cubes with 0.4%, 0.8% and 1.2% aqueous solutions of 
sodium carboxymethyl cellulose at flow rates of 453 ml/s, 
534 ml/s and 599 ml/s was measured for the performance 
of vertical scraped surface heat exchanger (VSHE) rotating 
at 60, 110 and 160 rpm, and the particle flow distribution 
characteristics for each set of conditions were studied in 
[17]. Statistical data processing using Pearson’s chi-squared 
test showed that most distributions for the residence time 
of individual particles in the vertical flow in VSHE may be 
described by the gamma model, while for the horizontal 
VSHE, many of the individual distributions correspond 
to the normal model in addition to the gamma model. 
VSHE orientation turned out to be an important factor 

Significance area

Insignificance area

 = 1.02          =6 

Significance area

Insignificance area

  =6                       = 8.43

 mi
theor = n . pi

where  = Ф (zi + 1) – Ф(zi) is the probability of a random vari-
able X to fall within the range [ai; ai + 1); Ф(x) is the cumula-
tive Laplace distribution function.

5. Calculate χ2
exp by the formula:

 χ2
exp = 
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Pearson’s goodness-of-fit test or Pearson’s chi-squared test 
Pearson's goodness-of-fit test (or Pearson's chi-squared test) is the most commonly used to 

test the hypothesis that a certain sample belongs to a theoretical distribution law [7,8].  
Given data for the problem: let there be a sample of values for a random variable X with size 

𝑛𝑛: 𝑥𝑥�, 𝑥𝑥�, . . . , 𝑥𝑥� and a set of corresponding frequencies 𝑚𝑚�, 𝑚𝑚�, . . . 𝑚𝑚� (k is the number of 
partition intervals). As a measure of difference between the empirical and theoretical 
distributions, the value 𝜒𝜒� is taken, which is equal to the sum of the squared deviations of the 
relative frequencies ��

�
 from the probabilities 𝑝𝑝� calculated from the assumed distribution and 

taken with a certain coefficient 𝑐𝑐�:  

𝜒𝜒� = ∑ 𝑐𝑐�
�
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�
− 𝑝𝑝��
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      (1) 

  

The coefficient 𝑐𝑐� is chosen in such a way that for the same deviations ���
�

− 𝑝𝑝��
�
, the 

deviations at which 𝑝𝑝� is small have more weight, and the deviations at which 𝑝𝑝� is large have 
less weight. Therefore, �

��
 ratio is taken as 𝑐𝑐�. We obtain the measure of difference of the 

following form:  
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 (2) 
so that, with 𝑛𝑛 → ∞, the sample distribution of 𝜒𝜒� tends to the limit distribution of 𝜒𝜒� with 

the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1, where r is the number of parameters of the 
hypothetical probability distribution estimated from the sample data. Numbers 𝑚𝑚� and 𝑚𝑚�

�����are 
called empirical and theoretical frequencies, respectively.  

 
Application of Pearson’s chi-squared test  
1. The measure of difference between empirical and theoretical frequencies is determined by 

the formula (2) and the experimental value of the test is calculated. 
2. For the chosen significance level 𝛼𝛼, using the table of 𝜒𝜒� distributions, the critical value 

𝜒𝜒��
�  is found with the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1. 

3. If the experimental value 𝜒𝜒���
�  is greater than the critical value, i.e. 𝜒𝜒���

�   𝜒𝜒��
� , then the null 

hypothesis 𝐻𝐻� is rejected; and if 𝜒𝜒���
�  < 𝜒𝜒��

� , the null hypothesis 𝐻𝐻� does not contradict the 
experimental data.  

Limitations of Pearson’s chi-squared test  
1. Sample size must be large enough: 𝑛𝑛  30.  
2. The theoretical frequency for each cell should not be less than 5.  
3. The selected ranks should cover the entire range of the indicator's variability. Classification 

into ranks should be the same in all compared distributions.  
4. Ranks should be non-overlapping.  
 
Testing the hypothesis about the normal distribution of the general population  
1. Based on a sample of size 𝑛𝑛, arrange the interval statistical array by classification of the 

given data into k ranges [𝑎𝑎�; 𝑎𝑎���) with the corresponding frequencies 𝑚𝑚�. Rearrange interval 
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hypothetical probability distribution estimated from the sample data. Numbers 𝑚𝑚� and 𝑚𝑚�
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called empirical and theoretical frequencies, respectively.  

 
Application of Pearson’s chi-squared test  
1. The measure of difference between empirical and theoretical frequencies is determined by 

the formula (2) and the experimental value of the test is calculated. 
2. For the chosen significance level 𝛼𝛼, using the table of 𝜒𝜒� distributions, the critical value 

𝜒𝜒��
�  is found with the number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1. 

3. If the experimental value 𝜒𝜒���
�  is greater than the critical value, i.e. 𝜒𝜒���
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hypothesis 𝐻𝐻� is rejected; and if 𝜒𝜒���
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� , the null hypothesis 𝐻𝐻� does not contradict the 
experimental data.  

Limitations of Pearson’s chi-squared test  
1. Sample size must be large enough: 𝑛𝑛  30.  
2. The theoretical frequency for each cell should not be less than 5.  
3. The selected ranks should cover the entire range of the indicator's variability. Classification 

into ranks should be the same in all compared distributions.  
4. Ranks should be non-overlapping.  
 
Testing the hypothesis about the normal distribution of the general population  
1. Based on a sample of size 𝑛𝑛, arrange the interval statistical array by classification of the 

given data into k ranges [𝑎𝑎�; 𝑎𝑎���) with the corresponding frequencies 𝑚𝑚�. Rearrange interval 

 (3)

or
(4)
6. Using the table, calculate [9,10,11,12], considering the 

given level of significance and the number of degrees of 
freedom.

7. Compare.
If <, there is no reason to reject the hypothesis about the 

normal distribution of the general population.
If ≥, the hypothesis about the normal distribution of the 

general population should be rejected.
Testing the hypothesis about the distribution of a ran-

dom variable according to a uniform law
1. Group the sample data by arranging them as a se-

quence k of the ranges and their corresponding frequen-
cies,,,.

2. From a given variational array, calculate the prob-
abilities of Х to fall within the range by the formula:

(5)
3. Calculate theoretical frequencies by the formula:
where n is sample size.
4. Calculate by the formula (4).
5. For given significance level and the number of de-

grees of freedom, calculate using the table [9,10,11,12].
6. Compare.
If <, there is no reason to reject the hypothesis of uni-

form distribution of X within the range [a; b].
If ≥, then the hypothesis of uniform distribution should 

be rejected.
Example 1. 48 cows were examined for deviations of 

the annual milk yield from the average. Grouped data are 
given in Table 2.

Table 2. Given data for the problem
Annual milk yield, kg 0÷1000 1000÷2000 2000÷3000 3000÷4000 4000÷5000

Number of cows, animals 2 8 23 13 2
Evaluate the hypothesis about the normal distribution 

of the general population at a significance level α ≤ 0.05 
with Pearson’s chi-squared test.

Solution. Let’s rearrange interval statistical array into 
statistical array by replacing each range with its mean val-
ue. Now we have Table 3.

Table 3. Statistical array
500 1500 2500 3500 4500
2 8 23 13 2

Using Table 3, let’s calculate mathematical expectation 
estimate and sample standard deviation.

Mathematical expectation:
= =;
Sample variance
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so that, with 𝑛𝑛 → ∞, the sample distribution of 𝜒𝜒� tends to 
the limit distribution of 𝜒𝜒� with the number of degrees of 
freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1, where r is the number of param-
eters of the hypothetical probability distribution estimated 
from the sample data. Numbers 𝑚𝑚� and 𝑚𝑚�

�����are called 
empirical and theoretical frequencies, respectively.  

 
Application of Pearson’s chi-squared test  
1. The measure of difference between empirical and 

theoretical frequencies is determined by the formula (2) 
and the experimental value of the test is calculated. 

2. For the chosen significance level 𝛼𝛼, using the table of 
𝜒𝜒� distributions, the critical value 𝜒𝜒��

�  is found with the 
number of degrees of freedom 𝑣𝑣 = 𝑘𝑘 − 𝑟𝑟 − 1. 

3. If the experimental value 𝜒𝜒���
�  is greater than the crit-

ical value, i.e. 𝜒𝜒���
�   𝜒𝜒��

� , then the null hypothesis 𝐻𝐻� is 
rejected; and if 𝜒𝜒���

�  < 𝜒𝜒��
� , the null hypothesis 𝐻𝐻� does not 

contradict the experimental data.  
Limitations of Pearson’s chi-squared test  
1. Sample size must be large enough: 𝑛𝑛  30.  
2. The theoretical frequency for each cell should not 

be less than 5.  
3. The selected ranks should cover the entire range of 

the indicator's variability. Classification into ranks should 
be the same in all compared distributions.  

4. Ranks should be non-overlapping.  
 
Testing the hypothesis about the normal  
distribution of the general population  
1. Based on a sample of size 𝑛𝑛, arrange the interval sta-

tistical array by classification of the given data into k 
ranges [𝑎𝑎�; 𝑎𝑎���) with the corresponding frequencies 𝑚𝑚�. 
Rearrange interval statistical array into statistical array by 
replacing each range [𝑎𝑎�; 𝑎𝑎���) with its mean value: 𝑥𝑥� =
�������

�
. Now we have Table 1.  

 
Table 1. Interval statistical array  

Ranges  
for observed 

values of a ran-
dom variable Х 

[𝒂𝒂𝟏𝟏; 𝒂𝒂𝟐𝟐) [𝒂𝒂𝟐𝟐; 𝒂𝒂𝟑𝟑) … [𝒂𝒂𝒊𝒊; 𝒂𝒂𝒊𝒊�𝟏𝟏) [𝒂𝒂𝒌𝒌; 𝒂𝒂𝒌𝒌�𝟏𝟏) 

Frequencies 𝒎𝒎𝒊𝒊 𝒎𝒎𝟏𝟏 𝒎𝒎𝟐𝟐 … 𝒎𝒎𝒊𝒊 𝒎𝒎𝒌𝒌 

Mean value 𝒙𝒙𝒊𝒊 𝒙𝒙𝟏𝟏 𝒙𝒙𝟐𝟐 … 𝒙𝒙𝒊𝒊 𝒙𝒙𝒌𝒌 

 
2. Using Table 1, calculate mathematical expectation 

estimate 𝑥𝑥 and sample standard deviation 𝜎𝜎�. 

3. Calculate 
в

i
i

xaz



 , 𝑖𝑖 = 2,3, . . . 𝑘𝑘����������, where 𝑎𝑎�  is the 

left end of the ith range. Set value 𝑧𝑧� equal to minus ∞, and 
value 𝑧𝑧��� equal to plus ∞. 

4. Assuming a normal distribution of the general pop-
ulation, determine the theoretical frequencies 𝑚𝑚�

�����, 
𝑚𝑚�

�����, …, 𝑚𝑚�
����� by the formula: 

𝑚𝑚�
����� = 𝑛𝑛 ∙ 𝑝𝑝�, 

where 𝑝𝑝� = 𝛷𝛷(𝑧𝑧���) − 𝛷𝛷(𝑧𝑧�) is the probability of a ran-
dom variable X to fall within the range [𝑎𝑎�; 𝑎𝑎���); 𝛷𝛷(𝑥𝑥) is 
the cumulative Laplace distribution function.  

5. Calculate 𝜒𝜒���
�  by the formula: 

 𝜒𝜒���
� = ∑ ������

������
�

��
�����

�
���   (3) 

or 
 𝜒𝜒���

� = ∑ ��
�

��
�����

�
��� − 𝑛𝑛  (4) 

6. Using the table, calculate 𝜒𝜒��
�  [9,10,11,12], consider-

ing the given level of significance 𝛼𝛼 and the number of de-
grees of freedom 𝑣𝑣 = 𝑘𝑘 − 3. 

7. Compare 𝜒𝜒���
�  and 𝜒𝜒��

� . 
If 𝜒𝜒���

�  < 𝜒𝜒��
� , there is no reason to reject the hypothesis 

about the normal distribution of the general population. 
If 𝜒𝜒���

�   𝜒𝜒��
� , the hypothesis about the normal distri-

bution of the general population should be rejected. 
 
Testing the hypothesis about the distribution  
of a random variable according to a uniform law  
1. Group the sample data by arranging them as a se-

quence k of the ranges [𝑎𝑎�; 𝑎𝑎���) and their corresponding 
frequencies 𝑚𝑚�, 𝑖𝑖 = 1, . . . , 𝑘𝑘���������, 𝑎𝑎� = 𝑎𝑎, 𝑎𝑎��� = 𝑏𝑏. 

2. From a given variational array, calculate the proba-
bilities 𝑝𝑝�  of Х to fall within the range by the formula: 

 𝑝𝑝� = 𝑃𝑃(𝑎𝑎� < 𝑋𝑋 < 𝑎𝑎���) = �������
���

 (5) 

3. Calculate theoretical frequencies by the formula: 
𝑚𝑚�

����� = 𝑛𝑛 ∙ 𝑝𝑝�, 
where n is sample size.  

4. Calculate 𝜒𝜒���
�  by the formula (4).  

5. For given significance level 𝛼𝛼 and the number of de-
grees of freedom 𝑣𝑣 = 𝑘𝑘 − 1, calculate 𝜒𝜒��

�  using the table 
[9,10,11,12].  

6. Compare 𝜒𝜒���
�  and 𝜒𝜒��

� .  
If 𝜒𝜒���

�  < 𝜒𝜒��
� , there is no reason to reject the hypothesis 

of uniform distribution of X within the range [a; b].  
If 𝜒𝜒���

�   𝜒𝜒��
� , then the hypothesis of uniform distribu-

tion should be rejected.  
 
Example 1. 48 cows were examined for deviations of 

the annual milk yield from the average. Grouped data are 
given in Table 2.  

 

Table 2. Given data for the problem  

Annual milk yield, kg 

0÷
10

00
 

10
00

÷2
00

0 

20
00

÷3
00

0 

30
00

÷4
00

0 

40
00

÷5
00

0 

Number of cows, animals 2 8 23 13 2 

 
Evaluate the hypothesis about the normal distribution 

of the general population at a significance level   0.05 
with Pearson’s chi-squared test. 

Solution. Let’s rearrange interval statistical array into 
statistical array by replacing each range [𝑎𝑎�; 𝑎𝑎���) with its 
mean value 𝑥𝑥� = �������

�
. Now we have Table 3. 

 

Table 3. Statistical array  
𝒙𝒙𝒊𝒊 500 1500 2500 3500 4500 
𝒎𝒎𝒊𝒊 2 8 23 13 2 

 

Using Table 3, let’s calculate mathematical expectation 
estimate 𝑥𝑥 and sample standard deviation 𝜎𝜎�.  

Mathematical expectation:  

𝑥𝑥 = �
��

∑ 𝑥𝑥�𝑚𝑚�
�
���  = �

��
⋅ (500 ⋅ 2  +  1500 ⋅ 8  +

  + 2500 ⋅ 23  +  3500 ⋅ 13  +  4500 ⋅ 2 )   ≈ 2604; 

Sample variance  

𝐷𝐷� = �
��

∑ 𝑥𝑥�
�𝑚𝑚�

�
��� − 𝑥𝑥� = �

��
⋅ (500� ⋅ 2  +  1500� ⋅ 8  +

+ 2500� ⋅ 23  +  3500� ⋅ 13  +  4500� ⋅ 2) −
− 2604�   ≈ 759982.64; 

Sample standard deviation  
𝜎𝜎� = �𝐷𝐷� = √759982.64 ≈ 871.77. 

 

Let’s calculate 𝑝𝑝� = 𝛷𝛷(𝑧𝑧���) − 𝛷𝛷(𝑧𝑧�), the probability 
of a random variable X to fall within the range [𝑎𝑎�; 𝑎𝑎���); 
𝛷𝛷(𝑥𝑥) is the cumulative Laplace distribution function, 

в

i
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 . 

𝑝𝑝� = 𝛷𝛷 �
1000 − 2604

871.77
� − 𝛷𝛷(−∞) = −0.4671 + 0.5 =

= 0.0329; 

𝑝𝑝� = 𝛷𝛷 �
2000 − 2604

871.77
� − 𝛷𝛷 �

1000 − 2604
871.77

� =

= −0.2549 + 0.4671 = 0.2122; 

𝑝𝑝� = 𝛷𝛷 �
3000 − 2604

871.77
� − 𝛷𝛷 �

2000 − 2604
871.77

� =

= 0.1736 + 0.2549 = 0.4285; 

𝑝𝑝� = 𝛷𝛷 �
4000 − 2604

871.77
� − 𝛷𝛷 �

3000 − 2604
871.77

� =

= 0.4452 − 0.1736 = 0.2716; 

𝑝𝑝� = 𝛷𝛷(+∞) − 𝛷𝛷 �
4000 − 2604

871.77
� = 0.5 − 0.4452 = 0.0548. 

Let’s calculate 𝑚𝑚�
����� by the formula 𝑚𝑚�

����� = 𝑛𝑛 ⋅ 𝑝𝑝�  
and complete Table 4.  

 

Table 4. Calculation results  

№ 𝒙𝒙𝒊𝒊 𝒎𝒎𝒊𝒊 𝒎𝒎𝒊𝒊
𝟐𝟐 𝒑𝒑𝒊𝒊 𝒎𝒎𝒊𝒊

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
𝒎𝒎𝒊𝒊

𝟐𝟐

𝒎𝒎𝒊𝒊
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

1 500 2 4 0.0329 1.5792 2.532928 
2 1500 8 64 0.2122 10.1856 6.28338 
3 2500 23 529 0.4285 20.568 25.71956 
4 3500 13 169 0.2716 13.0368 12.9633 
5 4500 2 4 0.0548 2.6304 1.520681 
𝜮𝜮  48  1 48 49.01986 

 

𝜒𝜒���
� = 49.01986 − 48 = 1.01986 ≈ 1.02. 

Using the table [9, 10, 11, 12], for   0.05 and 𝑣𝑣 =
𝑘𝑘 − 𝑘𝑘 = 5 − 3 = 2 let’s determine 𝜒𝜒��

� = 6 
Let’s plot the axis of significance:  

 
Since 1.02 < 6 (𝜒𝜒���

�  < 𝜒𝜒��
� ), hypothesis about the nor-

mal distribution of the general population should be ac-
cepted.  

 
Example 2. In some areas, the distribution of cows by live 

weight was recorded. Grouped data are given in Table 5.  
 

Table 5. Given data for the problem  
Live weight, kg  400÷420 420÷440 440÷460 460÷480 480÷500 

Livestock, animals  12 39 88 82 86 

 
Evaluate the hypothesis about the normal distribution 

of the general population at a significance level   0.05 
with Pearson’s chi-squared test.  

Solution. Let’s rearrange interval statistical array into 
statistical array by replacing each range [𝑎𝑎�; 𝑎𝑎���) with its 
mean value 𝑥𝑥� = �������

�
. Now we have Table 6.  

 
Table 6. Statistical array  

𝒙𝒙𝒊𝒊 410 430 450 470 490 
𝒎𝒎𝒊𝒊 12 39 88 82 86 

 
Using Table 6, let’s calculate mathematical expectation 

estimate 𝑥𝑥 and sample standard deviation 𝜎𝜎�.  
Mathematical expectation:  
𝑥𝑥 = �

���
∑ 𝑥𝑥�𝑚𝑚�

�
���  =  �

���
⋅ (410 ⋅ 12  +  430 ⋅ 39  +

+ 450 ⋅ 88  +  470 ⋅ 82  +  490 ⋅ 86 ) = 462.443; 

Significance area Insignificance area 

𝜒𝜒���
�  = 1.02         𝜒𝜒��

�  = 6  
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influencing the forces acting on particles during the flow 
in the VSHE. Interactions of particles with each other, as 
well as a combination of process parameters, caused a “tail” 
of some particles, which led to a shift in the distribution 
to the right. The purpose of the article [18] was to assess 
the purchasing behavior of consumers and the decision-
making process when buying bread and to suggest ways 
to improve bread positioning in the market. 1601 correctly 
completed questionnaires were used for the analysis. Re-
sults were presented as response rates and statistical tests. 
The analysis included the evaluation of statistical hypoth-
eses about independence (significance level α = 0.01) using 
goodness-of-fit chi-squared test and Pearson’s random-
ness coefficient. Then the significance level was compared 
with the p value. For the p value > α, the null hypothesis 
was not rejected. The most important factors in choosing 
bread are freshness, appearance and price. Importance of 
price increases with the age of the respondents and de-
creases with the income of the surveyed consumers. The 
importance of a brand, as well as referrals from family and 
friends, increases slightly as consumer income increases. 
When making a purchase decision, most respondents do 
not make a difference between yeast and rye-yeast bread 
baking technologies. However, it cannot be stated that the 
preference for rye-yeast bread increases with the age of the 
respondents to the detriment of yeast bread, or vice versa.

In [19], gender differences were determined in the self-
assessment of social functioning in patients with comor-
bidity of affective disorders and chronic coronary artery 
disease. The study included 248 cardiac patients (194 men 
(78.2%) and 54 women (21.8%)) with chronic coronary 
artery disease and affective disorders. The mean age of 
patients with chronic disease in men was (57.2 +/- 6.5) 
years, and in women it was (59.3 +/- 7.1), p = 0.04. Qualita-
tive and quantitative indicators were examined using the 
Mann-Whitney test, Wilcoxon test and T-test; chi-squared 
test (Pearson’s goodness-of-fit test) was used to estimate 
frequencies. The purpose of the study in [20] was to re-
veal the parents’ ideas about the main trends and struc-
tural features of children’s Internet addiction. The study 
was based on the results of a mass survey. The survey was 
conducted in 2019 on a multi-stage sample (by gender, age, 
type of location), consisting of the adult population at the 
Tyumen region. The authors carried out a detailed socio-
statistical analysis of Internet risks for children based on 
self-assessments of all respondents (with identification of 
socio-demographic groups), risk assessments for children 
according to parents. The structure of “Parents” subsample 
by gender and type of location was proportional to the 
structure of the main sample. According to the authors, 
“Children” subsample included respondents’ children of 
minority age. The risk of Internet addiction was included 
in the structure of 12 Internet risks and examined on the 
basis of 4 components (behavioral, cognitive, social and af-
fective components). The analysis used Cronbach’s alpha 
consistency ratings, index method, Spearman rank corre-

lation coefficients, Pearson’s goodness-of-fit test, F-test for 
equality of several means, case classification and triangula-
tion method. The study [21] examined the relationship be-
tween mean micturition volume and urinary incontinence 
episodes per 24 hours after adjusting for fixed frequencies 
in children with overactive bladder. Patients were aged 5 
to 12 years with >= 4 episodes of daytime urinary inconti-
nence during the 7-day period prior to study entry. Mean 
number of episodes of urinary incontinence per 24 hours 
at the end of the study was the dependent variable. Ex-
planatory variables included treatment, mean number of 
episodes of urinary incontinence per 24 hours at baseline, 
and change in mean micturition volume from baseline to 
the end of the study. Statistical significance and degree of 
conformity were analyzed using Pearson’s chi-squared test. 
The aim of the study [22] was to evaluate the effectiveness 
of a pediatric mortality index of 3 in predicting mortality 
at the intensive care unit. This was an observational study 
conducted in the intensive care unit from January 2016 to 
October 2018. All patients aged 1 month to 15 years who 
were hospitalized to the intensive care unit were included. 
The authors analyzed the relationship between the pedi-
atric mortality index of 3 and mortality. Indicators of the 
pediatric mortality index of 3 were assessed by calibration 
and discrimination. Calibration assessed the pediatric 
mortality index of 3 at various mortality risks using the 
standardized mortality rate (SMR) and Pearson’s good-
ness-of-fit test (chi-squared test). The study [23] evaluated 
the impact of health-related quality of life on the use of 
health services using four different scoring data models. 
Health-related quality of life was measured using a brief 
six-dimensional instrument and a functional assessment 
of colon cancer therapy, while health service use was mea-
sured by the number of monthly clinical consultations and 
the number of monthly hospitalizations. Goodness-of-fit 
statistics (Pearson’s chi-squared test, Akaike information 
criterion and Bayesian tests) were used to determine the 
best model. In [24], a cross-sectional diagnostic study was 
described. 83 medical records of patients with suspected 
heart failure admitted to the emergency and internal medi-
cine department of the Ramiro Priale Priale National Hos-
pital were examined. Pearson’s chi-squared test was used 
to analyze categorical variables and ANOVA was used for 
continuous variables. P-values <0.05   were considered sig-
nificant.

Kolmogorov test
Kolmogorov goodness-of-fit test is designed to test the 

hypothesis that the sample belongs to some distribution 
law, i.  e. to check that the empirical distribution corre-
sponds to the expected model.

In this test, the maximum value of the absolute differ-
ence between the empirical distribution function ( )xF n  
and the corresponding theoretical distribution function is 
a measure of difference between theoretical and empirical 
distributions. This random variable is denoted as and is 
called Kolmogorov goodness-of-fit λ-test.

 

Sample variance  

𝐷𝐷� = �
���

∑ 𝑥𝑥�
�𝑚𝑚�

�
��� − 𝑥𝑥� = �

���
⋅ (410� ⋅ 12  + 430� ⋅

39  +   450� ⋅ 88  +  470� ⋅ 82  +   490� ⋅ 86) −
462.443�   ≈ 513.5757; 

Sample standard deviation  
𝜎𝜎� = �𝐷𝐷� = √513.5757 ≈ 22.66. 

 
Let’s calculate 𝑝𝑝� = 𝛷𝛷(𝑧𝑧���) − 𝛷𝛷(𝑧𝑧�), the probability 

of a random variable X to fall within the range [𝑎𝑎�; 𝑎𝑎���); 
𝛷𝛷(𝑥𝑥) is the cumulative Laplace distribution function, 

в

i
i

xaz



 .  

𝑝𝑝� = 𝛷𝛷 �
420 − 462.443

22.66
� − 𝛷𝛷(−∞) = −0.4693 + 0.5 =

= 0.0307; 

𝑝𝑝� = 𝛷𝛷 �
440 − 462.443

22.66
� − 𝛷𝛷 �

420 − 462.443
22.66

� =

= −0.3389 + 0.4693 = 0.1304; 

𝑝𝑝� = 𝛷𝛷 �
460 − 462.443

22.66
� − 𝛷𝛷 �

440 − 462.443
22.66

� =

= −0.0389 + 0.3389 = 0.2991; 

𝑝𝑝� = 𝛷𝛷 �
480 − 462.443

22.66
� − 𝛷𝛷 �

460 − 462.443
22.66

� =

= 0.2794 + 0.0389 = 0.3192; 

𝑝𝑝� = 𝛷𝛷(+∞) − 𝛷𝛷 �
480 − 462.443

22.66
� = 0.5 − 0.2794 =

= 0.2206. 

Let’s calculate 𝑚𝑚�
����� by the formula 𝑚𝑚�

����� = 𝑛𝑛 ⋅ 𝑝𝑝�  
and complete Table 7.  

 
Table 7. Calculation results  

№ 𝒙𝒙𝒊𝒊 𝒎𝒎𝒊𝒊 𝒎𝒎𝒊𝒊
𝟐𝟐 𝒑𝒑𝒊𝒊 𝒎𝒎𝒊𝒊

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
𝒎𝒎𝒊𝒊

𝟐𝟐

𝒎𝒎𝒊𝒊
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

1 410 12 144 0.0307 9.4249 15.2786767 
2 430 39 1521 0.1304 40.0328 37.99384505 
3 450 88 7744 0.2991 91.8237 84.33552558 
4 470 82 6724 0.3192 97.9944 68.61616582 
5 490 86 7396 0.2206 67.7242 109.2076392 
𝜮𝜮  307  1 307 315.432 

 
𝜒𝜒���

� = 315.432 − 307 = 8.43185 ≈ 8.43. 
Using Table [9, 10, 11, 12], for   0.05 and 𝑣𝑣 = 𝑣𝑣 −

𝑟𝑟 = 5 − 3 = 2 let’s determine 𝜒𝜒��
� = 6 

 

Let’s plot the axis of significance:  

 

Since 8.43 > 6 (when accepting the null hypothesis, it 
should be 𝜒𝜒���

�  < 𝜒𝜒��
� ), hypothesis about the normal distri-

bution of the general population should be rejected.  
 
Using the example of research in various fields, we will 

show the application of Pearson's goodness-of-fit test. The 
article [15] shows the applicability of target hazard quo-
tient (THQ) estimates for communicating the danger of 
seafood due to metal contamination. The food recall data 
set was collected by the Laboratory of government chem-
ists (LGC, UK) between January and November 2007. For 
example, seafood products originating in only 3 countries 
were recalled more than 10 times due to metal contamina-
tion (Spain, 50 times; France, 11 times; Indonesia, 
11 times). Products containing swordfish and sharks have 
been recalled more than 10 times, mostly due to mercury 
contamination. Based on the food alert/recall system, the 
application of THQ risk assessment in cases of seafood 
contamination with metals is questionable, as THQ im-
plies frequent (or even daily) lifetime exposure. Infrequent 
recalls due to metal contamination and lack of trend make 
it highly unlikely that a person would be exposed to re-
peated significant levels of metal ions in seafood. Pearson's 
goodness-of-fit chi-squared test, nonparametric correla-
tion (Kendall's tau) and Kruskal-Wallis test were used to 
confirm the hypothesis and perform statistical processing. 
The work [16] shows a study of perception, belief and be-
havior in relation to nutritional and complementary prac-
tices in inflammatory bowel disease (IBD). 80 patients 
with IBD completed a closed-ended 16-item questionnaire 
that was divided into three subsections: 1) baseline/demo-
graphic characteristics; 2) disease characteristics; 3) die-
tary and complementary beliefs and behaviors. One-sam-
ple chi-squared goodness-of-fit tests were used for each 
question, and two-sided Pearson's chi-squared tests of in-
dependence were used for testing differences in response 
to each question between baseline/demographic variables.  

The processing time of 1.0 cm, 1.5 cm and 2.0 cm po-
tato cubes with 0.4%, 0.8% and 1.2% aqueous solutions of 
sodium carboxymethyl cellulose at flow rates of 453 ml/s, 
534 ml/s and 599 ml/s was measured for the performance 
of vertical scraped surface heat exchanger (VSHE) rotating 
at 60, 110 and 160 rpm, and the particle flow distribution 
characteristics for each set of conditions were studied in 
[17]. Statistical data processing using Pearson's chi-
squared test showed that most distributions for the resi-
dence time of individual particles in the vertical flow in 
VSHE may be described by the gamma model, while for 
the horizontal VSHE, many of the individual distributions 
correspond to the normal model in addition to the gamma 
model. VSHE orientation turned out to be an important 

Significance area Insignificance area 

 𝜒𝜒��
�  =6                𝜒𝜒���

�  = 8.43 
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Application of Kolmogorov test
1. Arrange the results of observations in ascending or-

der: or represent them as an interval variational array.
2. Calculate the empirical relative frequencies for each 

rank by the formula:
(6)
3. Determine the values of the empirical distribution 

function by calculating the accumulated empirical relative 
frequencies by the formula:

jfff jj +=∑∑ −1      
(7)

where is the relative frequency accumulated in the pre-
vious ranks;

j is the order number of the rank;
The obtained values is empirical distribution function.
4. Determine the corresponding values of the assumed 

theoretical distribution function by counting the accumu-
lated theoretical relative frequencies for each rank by the 
formula:

(8)
where is the theoretical relative frequency accumulated 

in the previous ranks.
5. Calculate the absolute differences between the em-

pirical and theoretical accumulated relative frequencies for 
each rank. Designate them as d.

6. Determine the largest absolute difference.
7. Using the table of Kolmogorov test critical values [9, 

10, 11, 12], for a given significance level α and a number of 
observations n, determine the critical value.

If n > 100, then is calculated by the formula:
(9)
If ≥, then the null hypothesis is rejected: differences be-

tween distributions are significant.
If <, then it is considered that there is no reason for re-

jecting the null hypothesis, i. e. the difference between the 
empirical and theoretical distribution function is not sig-
nificant.

Limitations of test
Ranks should be arranged in ascending order.
Example. When weighing the fattened young cattle 

(103 animals) delivered to the meat processing plant, the 
following primary (raw) array was obtained according to 
live weight (kg):

413 454 419 412 427 435 4 0 4  
430 421 399 414 386 428 4 4 1  
397 417 418 423 420 416 4 0 7  
427 428 417 398 424 419 4 0 1  
424 411 426 380 419 406 4 1 0  
409 416 410 403 426 407 4 0 0  
423 425 394 432 409 418 4 1 9  
388 423 434 402 431 405 4 3 6  
405 424 405 412 413 444 3 9 2  
411 428 394 433 395 433 4 2 0  
430 398 437 422 394 416 4 2 4  
434 407 443 406 422 414 4 2 9  
417 406 419 429 406 388 4 2 1  

415 417 394 431 411 422 4 1 0  
432 409 439 421 414

Determine whether the data obtained are normally dis-
tributed or not at a significance level α ≤ 0.05.

Solution. Let’s rearrange the primary array into the 
variational array (Table 8).

Table 8. Variational array by the live weight of young 
cattle when delivered to a meat processing plant

W 380–
389

390–
399

400–
409

410–
419

420–
429

430–
439

440–
449

450–
459 Sum

f 4 10 16 30 26 13 3 1 n=103
Let’s determine empirical relative frequencies for each 

rank by the formula:
,
where is the frequency of a given number of points, n is 

the total number of points appearances.
Let’s determine accumulated empirical relative fre-

quencies by the formula:
jjj fff +=∑∑ −1

where is the relative frequency accumulated in the pre-
vious ranks;

j is the order number of the rank.
Let’s determine theoretical relative frequencies for each 

rank. For the 1st rank, the theoretical relative frequency is 
calculated by the formula:

,
where k is the number of ranks (k = 8).
.
This theoretical relative frequency applies to all ranks.
Let’s determine accumulated theoretical relative fre-

quencies.
;
Calculate the absolute differences between the accumu-

lated empirical and theoretical frequencies:
;
The results are shown in Table 9.
Table 9. Calculation results

Number 
of 

points
Empirical 
frequency

Empirical 
relative 

frequency

Accumulated 
empirical relative 

frequency

Accumulated 
theoretical 

relative 
frequency

Difference

1 4 0.039 0.039 0.125 0.086
2 10 0.097 0.136 0.250 0.114
3 16 0.155 0.291 0.375 0.084
4 30 0.291 0.582 0.500 0.082
5 26 0.252 0.834 0.625 0.209
6 13 0.126 0.960 0.750 0.210
7 3 0.029 0.989 0.875 0.114
8 1 0.0097 1 1 0

Sums 103 1
Let’s determine the largest absolute difference (yellow 

color cell).

 

Sample variance  

𝐷𝐷� = �
���

∑ 𝑥𝑥�
�𝑚𝑚�

�
��� − 𝑥𝑥� = �

���
⋅ (410� ⋅ 12  + 430� ⋅

39  +   450� ⋅ 88  +  470� ⋅ 82  +   490� ⋅ 86) −
462.443�   ≈ 513.5757; 

Sample standard deviation  
𝜎𝜎� = �𝐷𝐷� = √513.5757 ≈ 22.66. 

 
Let’s calculate 𝑝𝑝� = 𝛷𝛷(𝑧𝑧���) − 𝛷𝛷(𝑧𝑧�), the probability 

of a random variable X to fall within the range [𝑎𝑎�; 𝑎𝑎���); 
𝛷𝛷(𝑥𝑥) is the cumulative Laplace distribution function, 

в

i
i
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
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 .  

𝑝𝑝� = 𝛷𝛷 �
420 − 462.443

22.66
� − 𝛷𝛷(−∞) = −0.4693 + 0.5 =

= 0.0307; 

𝑝𝑝� = 𝛷𝛷 �
440 − 462.443

22.66
� − 𝛷𝛷 �

420 − 462.443
22.66

� =

= −0.3389 + 0.4693 = 0.1304; 

𝑝𝑝� = 𝛷𝛷 �
460 − 462.443

22.66
� − 𝛷𝛷 �

440 − 462.443
22.66

� =

= −0.0389 + 0.3389 = 0.2991; 

𝑝𝑝� = 𝛷𝛷 �
480 − 462.443

22.66
� − 𝛷𝛷 �

460 − 462.443
22.66

� =

= 0.2794 + 0.0389 = 0.3192; 

𝑝𝑝� = 𝛷𝛷(+∞) − 𝛷𝛷 �
480 − 462.443

22.66
� = 0.5 − 0.2794 =

= 0.2206. 

Let’s calculate 𝑚𝑚�
����� by the formula 𝑚𝑚�

����� = 𝑛𝑛 ⋅ 𝑝𝑝�  
and complete Table 7.  

 
Table 7. Calculation results  

№ 𝒙𝒙𝒊𝒊 𝒎𝒎𝒊𝒊 𝒎𝒎𝒊𝒊
𝟐𝟐 𝒑𝒑𝒊𝒊 𝒎𝒎𝒊𝒊

𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 
𝒎𝒎𝒊𝒊

𝟐𝟐

𝒎𝒎𝒊𝒊
𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕𝒕 

1 410 12 144 0.0307 9.4249 15.2786767 
2 430 39 1521 0.1304 40.0328 37.99384505 
3 450 88 7744 0.2991 91.8237 84.33552558 
4 470 82 6724 0.3192 97.9944 68.61616582 
5 490 86 7396 0.2206 67.7242 109.2076392 
𝜮𝜮  307  1 307 315.432 

 
𝜒𝜒���

� = 315.432 − 307 = 8.43185 ≈ 8.43. 
Using Table [9, 10, 11, 12], for   0.05 and 𝑣𝑣 = 𝑣𝑣 −

𝑟𝑟 = 5 − 3 = 2 let’s determine 𝜒𝜒��
� = 6 

 

Let’s plot the axis of significance:  

 

Since 8.43 > 6 (when accepting the null hypothesis, it 
should be 𝜒𝜒���

�  < 𝜒𝜒��
� ), hypothesis about the normal distri-

bution of the general population should be rejected.  
 
Using the example of research in various fields, we will 

show the application of Pearson's goodness-of-fit test. The 
article [15] shows the applicability of target hazard quo-
tient (THQ) estimates for communicating the danger of 
seafood due to metal contamination. The food recall data 
set was collected by the Laboratory of government chem-
ists (LGC, UK) between January and November 2007. For 
example, seafood products originating in only 3 countries 
were recalled more than 10 times due to metal contamina-
tion (Spain, 50 times; France, 11 times; Indonesia, 
11 times). Products containing swordfish and sharks have 
been recalled more than 10 times, mostly due to mercury 
contamination. Based on the food alert/recall system, the 
application of THQ risk assessment in cases of seafood 
contamination with metals is questionable, as THQ im-
plies frequent (or even daily) lifetime exposure. Infrequent 
recalls due to metal contamination and lack of trend make 
it highly unlikely that a person would be exposed to re-
peated significant levels of metal ions in seafood. Pearson's 
goodness-of-fit chi-squared test, nonparametric correla-
tion (Kendall's tau) and Kruskal-Wallis test were used to 
confirm the hypothesis and perform statistical processing. 
The work [16] shows a study of perception, belief and be-
havior in relation to nutritional and complementary prac-
tices in inflammatory bowel disease (IBD). 80 patients 
with IBD completed a closed-ended 16-item questionnaire 
that was divided into three subsections: 1) baseline/demo-
graphic characteristics; 2) disease characteristics; 3) die-
tary and complementary beliefs and behaviors. One-sam-
ple chi-squared goodness-of-fit tests were used for each 
question, and two-sided Pearson's chi-squared tests of in-
dependence were used for testing differences in response 
to each question between baseline/demographic variables.  

The processing time of 1.0 cm, 1.5 cm and 2.0 cm po-
tato cubes with 0.4%, 0.8% and 1.2% aqueous solutions of 
sodium carboxymethyl cellulose at flow rates of 453 ml/s, 
534 ml/s and 599 ml/s was measured for the performance 
of vertical scraped surface heat exchanger (VSHE) rotating 
at 60, 110 and 160 rpm, and the particle flow distribution 
characteristics for each set of conditions were studied in 
[17]. Statistical data processing using Pearson's chi-
squared test showed that most distributions for the resi-
dence time of individual particles in the vertical flow in 
VSHE may be described by the gamma model, while for 
the horizontal VSHE, many of the individual distributions 
correspond to the normal model in addition to the gamma 
model. VSHE orientation turned out to be an important 
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factor influencing the forces acting on particles during the 
flow in the VSHE. Interactions of particles with each other, 
as well as a combination of process parameters, caused a 
"tail" of some particles, which led to a shift in the distribu-
tion to the right. The purpose of the article [18] was to as-
sess the purchasing behavior of consumers and the deci-
sion-making process when buying bread and to suggest 
ways to improve bread positioning in the market. 1601 
correctly completed questionnaires were used for the anal-
ysis. Results were presented as response rates and statisti-
cal tests. The analysis included the evaluation of statistical 
hypotheses about independence (significance level 
α = 0.01) using goodness-of-fit chi-squared test and Pear-
son's randomness coefficient. Then the significance level 
was compared with the p value. For the p value > α, the 
null hypothesis was not rejected. The most important fac-
tors in choosing bread are freshness, appearance and price. 
Importance of price increases with the age of the respond-
ents and decreases with the income of the surveyed con-
sumers. The importance of a brand, as well as referrals 
from family and friends, increases slightly as consumer in-
come increases. When making a purchase decision, most 
respondents do not make a difference between yeast and 
rye-yeast bread baking technologies. However, it cannot 
be stated that the preference for rye-yeast bread increases 
with the age of the respondents to the detriment of yeast 
bread, or vice versa.  

In [19], gender differences were determined in the self-
assessment of social functioning in patients with comor-
bidity of affective disorders and chronic coronary artery 
disease. The study included 248 cardiac patients (194 men 
(78.2%) and 54 women (21.8%)) with chronic coronary ar-
tery disease and affective disorders. The mean age of pa-
tients with chronic disease in men was (57.2 +/– 6.5) years, 
and in women it was (59.3 +/– 7.1), p = 0.04. Qualitative 
and quantitative indicators were examined using the 
Mann-Whitney test, Wilcoxon test and T-test; chi-squared 
test (Pearson's goodness-of-fit test) was used to estimate 
frequencies. The purpose of the study in [20] was to reveal 
the parents' ideas about the main trends and structural fea-
tures of children's Internet addiction. The study was based 
on the results of a mass survey. The survey was conducted 
in 2019 on a multi-stage sample (by gender, age, type of 
location), consisting of the adult population at the Tyu-
men region. The authors carried out a detailed socio-sta-
tistical analysis of Internet risks for children based on self-
assessments of all respondents (with identification of so-
cio-demographic groups), risk assessments for children 
according to parents. The structure of “Parents” subsam-
ple by gender and type of location was proportional to the 
structure of the main sample. According to the authors, 

“Children” subsample included respondents’ children of 
minority age. The risk of Internet addiction was included 
in the structure of 12 Internet risks and examined on the 
basis of 4 components (behavioral, cognitive, social and af-
fective components). The analysis used Cronbach's alpha 
consistency ratings, index method, Spearman rank corre-
lation coefficients, Pearson's goodness-of-fit test, F-test for 
equality of several means, case classification and triangu-
lation method. The study [21] examined the relationship 
between mean micturition volume and urinary inconti-
nence episodes per 24 hours after adjusting for fixed fre-
quencies in children with overactive bladder. Patients were 
aged 5 to 12 years with >= 4 episodes of daytime urinary 
incontinence during the 7-day period prior to study entry. 
Mean number of episodes of urinary incontinence per 24 
hours at the end of the study was the dependent variable. 
Explanatory variables included treatment, mean number 
of episodes of urinary incontinence per 24 hours at base-
line, and change in mean micturition volume from base-
line to the end of the study. Statistical significance and de-
gree of conformity were analyzed using Pearson's chi-
squared test. The aim of the study [22] was to evaluate the 
effectiveness of a pediatric mortality index of 3 in predict-
ing mortality at the intensive care unit. This was an obser-
vational study conducted in the intensive care unit from 
January 2016 to October 2018. All patients aged 1 month 
to 15 years who were hospitalized to the intensive care unit 
were included. The authors analyzed the relationship be-
tween the pediatric mortality index of 3 and mortality. In-
dicators of the pediatric mortality index of 3 were assessed 
by calibration and discrimination. Calibration assessed the 
pediatric mortality index of 3 at various mortality risks us-
ing the standardized mortality rate (SMR) and Pearson's 
goodness-of-fit test (chi-squared test). The study [23] eval-
uated the impact of health-related quality of life on the use 
of health services using four different scoring data models. 
Health-related quality of life was measured using a brief 
six-dimensional instrument and a functional assessment 
of colon cancer therapy, while health service use was meas-
ured by the number of monthly clinical consultations and 
the number of monthly hospitalizations. Goodness-of-fit 
statistics (Pearson’s chi-squared test, Akaike information 
criterion and Bayesian tests) were used to determine the 
best model. In [24], a cross-sectional diagnostic study was 
described. 83 medical records of patients with suspected 
heart failure admitted to the emergency and internal med-
icine department of the Ramiro Priale Priale National 
Hospital were examined. Pearson's chi-squared test was 
used to analyze categorical variables and ANOVA was 
used for continuous variables. P-values < 0.05 were consid-
ered significant.  
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Since in this problem n > 100, then the critical value is 
calculated by the formula (9) for a significance level α ≤ 
0.05:

Let’s plot the axis of significance:
Since ≥, then the null hypothesis is rejected, i. e. the em-

pirical distribution for the live weight of cattle delivered to 
a meat processing plant differs from the normal (uniform) 
distribution.

Let’s give examples for the use of Kolmogorov test in 
scientific research. The article [25] analyzed the growth of 
rice, wheat and common food grains in India for the pe-
riod from 1950 to 2019. The distribution was assessed us-
ing Kolmogorov test. It was found that the availability of 
rice (70.05 kg/year), wheat (70.73 kg/year) and total grains 
(182.96 kg/year) will decrease in 2021 compared to this 
year. The article [26] analyzed a questionnaire survey of 
227 respondents regarding purchasing preferences for or-
ganic food in Slovakia. To achieve the goal and provide a 
deeper analysis of the results, 3 assumptions and 5 hypoth-
eses were made. According to the survey results, 65% of re-
spondents buy organic products, of which 39% buy organic 
products at least once a week. Up to 98% of respondents 
have already heard about the concept of organic food and 
know what it means. 37% of respondents buy mostly or-
ganic fruits and vegetables; 18% of respondents buy mostly 
organic meat and meat products, and 13% of respondents 
prefer organic dairy products. The most preferred place 
to buy organic products are specialized stores (36%); buy-
ing organic products directly from the manufacturer is the 
most popular way for 29% of respondents; hypermarkets 
and supermarkets are a favorite place to buy organic prod-
ucts for 19% of respondents; and 12% of respondents buy 
organic products mainly in farmers’ markets. Only 4% of 
respondents prefer another way to buy organic products. 
The quality of organic products and the absence of pesti-
cides are the most important criteria for purchasing organ-
ic products (36%). The results of the study were evaluated 
using the goodness-of-fit chi-squared test and Kolmogorov 
test, and the following conclusion was made: there is a dif-
ference in the preferences of the respondents. In Slovakia, 
there is a relationship between consumer preferences for 
organic food and traditional food, and there is a strong 
preference to buy organic food. The aim of the study [27] 
was to present a correct model for probability distribution 
based on data obtained from surveys on the temperature of 
food storage in household refrigerators at home. The tem-
perature in household refrigerators was determined as a 
risk factor for foodborne disease outbreaks for microbial 
risk assessment. Temperature was measured by visiting 139 
homes directly with a data logger from May to September 
2009. The overall average temperature for all refrigerators 
participating in the survey was 3.53 ± 2.96 °C, with 23.6% 
of refrigerators having temperatures above 5  °C. Prob-
ability distributions were generated from the measured 
temperature data. Statistical ranking was determined by 
Kolmogorov goodness-of-fit test or Anderson-Darling 

test to determine the appropriate probability distribution 
model. This result showed that the LogLogistic distribu-
tion (–10.407, 13.616, 8.6107) was the most appropriate for 
the microbial risk assessment model.

The aim of the work [28] was to study the strong Mar-
kov property for stochastic differential equations con-
trolled by G-Brownian motion (G-SDE). First, the authors 
extended the conditional G-expectancy of deterministic 
time to optional points of time. The strong Markov prop-
erty for the G-SDE was obtained using Kolmogorov tight-
ness criterion. The article [29] considers the process of the 
defect appearance in the body of a workpiece obtained by 
casting. The medium with many randomly distributed dis-
continuities was schematically a regular structure formed 
by a set of elements in the form of a regular tetrahedron 
with spherical depressions at the vertices. The proposed 
technique makes it possible to create a model of a continu-
ous homogeneous medium that is equivalent in its defor-
mation properties to the original discontinuous material. 
Using this approach, a power approximation of the exten-
sion curve for a model medium was obtained. The rupture 
of the material was fixed using Kolmogorov plastic defor-
mation test. This test was used in the evaluation of the limit 
state of the valve chamber under operating conditions.

Nonparametric tests for homogeneity
Hypotheses of homogeneity are hypotheses assuming 

that the samples under study are taken from the same gen-
eral population.

Let there be two independent samples with sizes ob-
tained from populations with unknown theoretical distri-
bution functions. Hypotheses are stated:

: Empirical distribution 1 does not differ from empirical 
distribution 2, i. e. .

: Empirical distribution 1 differs from empirical distri-
bution 2, i. e. .

Pearson’s chi-squared test for homogeneity
Pearson’s chi-squared test may be used to evaluate the 

homogeneity of two or more independent samples, i. e. to 
test the hypothesis that there are no differences between 
two and more empirical distributions of the same indica-
tor. Source data should be presented in the form of Table 
10:

Table 10. Source data template (cross-tab table or con-
tingency table)

Empirical frequencies

1

Indicator ranking
Sum… j … k

Ranks of the 
indicator

1
…
i

…
c

Sum
Such tables are called cross-tab tables or contingency 

Insignificance area

  = 0.134 maxd = 0.210

 

Kolmogorov test  
Kolmogorov goodness-of-fit test is designed to test the 

hypothesis that the sample belongs to some distribution 
law, i.e. to check that the empirical distribution corre-
sponds to the expected model.  

In this test, the maximum value of the absolute differ-
ence between the empirical distribution function Fn(x) 
and the corresponding theoretical distribution function 
d = max |Fn(x) – F(x)| is a measure of difference between 
theoretical and empirical distributions. This random vari-
able is denoted as 𝜆𝜆 = 𝐷𝐷√𝑛𝑛 and is called Kolmogorov good-
ness-of-fit -test.  

 
Application of Kolmogorov test  
1. Arrange the results of observations in ascending or-

der: 𝑥𝑥� ≤ 𝑥𝑥� ≤ ⋯ ≤ 𝑥𝑥� or represent them as an interval 
variational array.  

2. Calculate the empirical relative frequencies for each 
rank by the formula:  
 𝑓𝑓� = ��

�
 (6) 

3. Determine the values of the empirical distribution 
function 𝐹𝐹�(𝑥𝑥) by calculating the accumulated empirical 
relative frequencies by the formula:  

 jfff jj  1  (7) 

where ∑ 𝑓𝑓� is the relative frequency accumulated in the previous 
ranks; j is the order number of the rank;  

The obtained values ∑ 𝑓𝑓� is empirical distribution 
function.  

4. Determine the corresponding values of the assumed 
theoretical distribution function by counting the accumu-
lated theoretical relative frequencies for each rank by the 
formula:  
 ∑ 𝑓𝑓�

����� = ∑ 𝑓𝑓�
����� + 𝑓𝑓�

����� (8) 

where ∑ 𝑓𝑓�
�����  is the theoretical relative frequency accumulated 

in the previous ranks.  

5. Calculate the absolute differences between the em-
pirical and theoretical accumulated relative frequencies for 
each rank. Designate them as d.  

6. Determine the largest absolute difference 𝑑𝑑���.  
7. Using the table of Kolmogorov test critical values [9, 

10, 11, 12], for a given significance level  and a number 
of observations n, determine the critical value 𝑑𝑑��.  

If n > 100, then 𝑑𝑑�� is calculated by the formula:  

 𝑑𝑑�� = �
�.��
√�

 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼  ≤  0.05
�.��
√�

 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼  ≤  0.01
 (9) 

If 𝑑𝑑���  𝑑𝑑��, then the null hypothesis is rejected: dif-
ferences between distributions are significant.  

If 𝑑𝑑��� < 𝑑𝑑��, then it is considered that there is no rea-
son for rejecting the null hypothesis, i.e. the difference be-
tween the empirical and theoretical distribution function 
is not significant.  

 
Limitations of test  
Ranks should be arranged in ascending order.  
 
Example. When weighing the fattened young cattle 

(103 animals) delivered to the meat processing plant, the 
following primary (raw) array was obtained according to 
live weight (kg):  

 

413 454 419 412 427 435 404 430 421 399 414 386 
428 441 397 417 418 423 420 416 407 427 428 417 
398 424 419 401 424 411 426 380 419 406 410 409 
416 410 403 426 407 400 423 425 394 432 409 418 
419 388 423 434 402 431 405 436 405 424 405 412 
413 444 392 411 428 394 433 395 433 420 430 398 
437 422 394 416 424 434 407 443 406 422 414 429 
417 406 419 429 406 388 421 415 417 394 431 411 
422 410 432 409 439 421 414      

 

Determine whether the data obtained are normally dis-
tributed or not at a significance level   0.05.  

Solution. Let’s rearrange the primary array into the 
variational array (Table 8).  

Table 8. Variational array by the live weight of young cattle 
when delivered to a meat processing plant  

W 380-
389 

390-
399 

400-
409 

410-
419 

420-
429 

430-
439 

440-
449 

450-
459 Sum 

f 4 10 16 30 26 13 3 1 n=103 
 

Let’s determine empirical relative frequencies for each 
rank by the formula:  

𝑓𝑓� = ��

�
, 

where 𝑚𝑚�  is the frequency of a given number of points, n is the 
total number of points appearances.  

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

4
103

= 0.039 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

10
103

= 0.097 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

16
103

= 0.155 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

30
103

= 0.291 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

26
103

= 0.252 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

13
103

= 0.126 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

3
103

= 0.029 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

1
103

= 0.0097 
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Since in this problem n > 100, then the critical value is 
calculated by the formula (9) for a significance level α ≤ 
0.05:

Let’s plot the axis of significance:
Since ≥, then the null hypothesis is rejected, i. e. the em-

pirical distribution for the live weight of cattle delivered to 
a meat processing plant differs from the normal (uniform) 
distribution.

Let’s give examples for the use of Kolmogorov test in 
scientific research. The article [25] analyzed the growth of 
rice, wheat and common food grains in India for the pe-
riod from 1950 to 2019. The distribution was assessed us-
ing Kolmogorov test. It was found that the availability of 
rice (70.05 kg/year), wheat (70.73 kg/year) and total grains 
(182.96 kg/year) will decrease in 2021 compared to this 
year. The article [26] analyzed a questionnaire survey of 
227 respondents regarding purchasing preferences for or-
ganic food in Slovakia. To achieve the goal and provide a 
deeper analysis of the results, 3 assumptions and 5 hypoth-
eses were made. According to the survey results, 65% of re-
spondents buy organic products, of which 39% buy organic 
products at least once a week. Up to 98% of respondents 
have already heard about the concept of organic food and 
know what it means. 37% of respondents buy mostly or-
ganic fruits and vegetables; 18% of respondents buy mostly 
organic meat and meat products, and 13% of respondents 
prefer organic dairy products. The most preferred place 
to buy organic products are specialized stores (36%); buy-
ing organic products directly from the manufacturer is the 
most popular way for 29% of respondents; hypermarkets 
and supermarkets are a favorite place to buy organic prod-
ucts for 19% of respondents; and 12% of respondents buy 
organic products mainly in farmers’ markets. Only 4% of 
respondents prefer another way to buy organic products. 
The quality of organic products and the absence of pesti-
cides are the most important criteria for purchasing organ-
ic products (36%). The results of the study were evaluated 
using the goodness-of-fit chi-squared test and Kolmogorov 
test, and the following conclusion was made: there is a dif-
ference in the preferences of the respondents. In Slovakia, 
there is a relationship between consumer preferences for 
organic food and traditional food, and there is a strong 
preference to buy organic food. The aim of the study [27] 
was to present a correct model for probability distribution 
based on data obtained from surveys on the temperature of 
food storage in household refrigerators at home. The tem-
perature in household refrigerators was determined as a 
risk factor for foodborne disease outbreaks for microbial 
risk assessment. Temperature was measured by visiting 139 
homes directly with a data logger from May to September 
2009. The overall average temperature for all refrigerators 
participating in the survey was 3.53 ± 2.96 °C, with 23.6% 
of refrigerators having temperatures above 5  °C. Prob-
ability distributions were generated from the measured 
temperature data. Statistical ranking was determined by 
Kolmogorov goodness-of-fit test or Anderson-Darling 

test to determine the appropriate probability distribution 
model. This result showed that the LogLogistic distribu-
tion (–10.407, 13.616, 8.6107) was the most appropriate for 
the microbial risk assessment model.

The aim of the work [28] was to study the strong Mar-
kov property for stochastic differential equations con-
trolled by G-Brownian motion (G-SDE). First, the authors 
extended the conditional G-expectancy of deterministic 
time to optional points of time. The strong Markov prop-
erty for the G-SDE was obtained using Kolmogorov tight-
ness criterion. The article [29] considers the process of the 
defect appearance in the body of a workpiece obtained by 
casting. The medium with many randomly distributed dis-
continuities was schematically a regular structure formed 
by a set of elements in the form of a regular tetrahedron 
with spherical depressions at the vertices. The proposed 
technique makes it possible to create a model of a continu-
ous homogeneous medium that is equivalent in its defor-
mation properties to the original discontinuous material. 
Using this approach, a power approximation of the exten-
sion curve for a model medium was obtained. The rupture 
of the material was fixed using Kolmogorov plastic defor-
mation test. This test was used in the evaluation of the limit 
state of the valve chamber under operating conditions.

Nonparametric tests for homogeneity
Hypotheses of homogeneity are hypotheses assuming 

that the samples under study are taken from the same gen-
eral population.

Let there be two independent samples with sizes ob-
tained from populations with unknown theoretical distri-
bution functions. Hypotheses are stated:

: Empirical distribution 1 does not differ from empirical 
distribution 2, i. e. .

: Empirical distribution 1 differs from empirical distri-
bution 2, i. e. .

Pearson’s chi-squared test for homogeneity
Pearson’s chi-squared test may be used to evaluate the 

homogeneity of two or more independent samples, i. e. to 
test the hypothesis that there are no differences between 
two and more empirical distributions of the same indica-
tor. Source data should be presented in the form of Table 
10:

Table 10. Source data template (cross-tab table or con-
tingency table)

Empirical frequencies

1

Indicator ranking
Sum… j … k

Ranks of the 
indicator

1
…
i

…
c

Sum
Such tables are called cross-tab tables or contingency 

Insignificance area

  = 0.134 maxd = 0.210

tables.
The algorithm for calculating Pearson’s chi-squared test 

is the same as for Pearson’s goodness-of-fit test (see above), 
but for each cell of the ith row and jth column, its own theo-
retical frequency is determined by the formula:

,     (10)
where N is the sum of frequencies of the entire contin-

gency table;
is the sum of frequencies in all cells of the ith row;
is the sum of frequencies in all cells of the jth column.
Pearson’s chi-squared test is calculated by the formula:
.     (11)
The number of degrees of freedom is calculated by the 

formula:
(12)
where с is the number of ranks for the indicator (num-

ber of compared distributions).
If the number of degrees of freedom is equal to 1, i. e., if 

the indicator only takes two values, the adjusting for con-
tinuity is needed. The adjusting for continuity is applied 
under the following conditions:

1) when the empirical distribution is compared to the 
uniform distribution, and the number of indicator rank-
ings k = 2, and the number of degrees of freedom v= k —  
1=1.

2) when two empirical distributions are compared, and 
k=2, i. e. number of rows and number of columns is both 
equal to 2 and.

In these cases, it is necessary to reduce the absolute dif-
ference by 0.5 prior to squaring. is calculated by the for-
mula:

(13)
Example. During the survey, high school students 

were asked which of the three possible areas of education 
(mathematics, natural sciences or human sciences) they 
would prefer in the future. Among the respondents were 
both young males and young females [30]. The data are 
summarized in Table 11.

Table 11. Given data for the problem
Empirical frequencies

Mathematics

Indicator ranking
Natural sciences Human sciences

Ranks 
of the 

indicator

Young males 1 18 10 3
Young females 

2
10 9 15

Such table is called a cross-tab table with size of.
Is it possible to state that at a significance level α ≤ 

0.05 the preference for one or another area of education is 
somehow related to the gender factor?

Solution. Let’s state the hypotheses:
: distribution of preferences for the area of education in 

young males and young females is not significantly differ-
ent from the random distribution.

: distribution of preferences for the area of education in 
young males and young females is significantly different 

from the random distribution.
In Table 12 sums of frequencies are calculated by rows 

and columns.
Table 12. Intermediate cross-tab calculations

Empirical frequencies

Mathematics

Indicator ranking
SumNatural 

sciences Human sciences

Ranks of 
the indicator

Young males 1 18 10 3 31
Young females 

2
10 9 15 34

Sum 28 19 18 65
For each of the cells, a special theoretical frequency re-

lated only to this cell should be calculated by the formula:
.
There are 65 frequencies in total, of which 28 frequen-

cies correspond to mathematics, 19 frequencies corre-
spond to natural sciences, and 18 frequencies correspond 
to human sciences. The proportion of each education area 
is 28/65, 19/65, 18/65, respectively. In all rows, mathematics 
should be 28/65 of all the answers, natural sciences should 
be 19/65, and human sciences should be 18/65. Knowing 
the sums of frequencies for each row, you can calculate the 
theoretical frequencies for each cell.

;
;
;
;
;
.
Let’s complete Table 13.
Table 13. Calculation results

Rank —   
indicator ranking
Young males —  
mathematics 18 13.35 4.65 21.59 1.62

Young males —  natural 
sciences 10 9.06 0.94 0.88 0.10

Young males —  human 
sciences 3 8.58 -5.58 31.19 3.63

Young females 
-mathematics 10 14.65 -4.65 21.59 1.47

Young females —  
natural sciences 9 9.94 -0.94 0.88 0.09

Young females —  
human sciences 15 9.42 5.58 31.19 3.31

.
The number of degrees of freedom is calculated by the 

formula:
Using the table of critical values [9, 10, 11, 12], χ2 distri-

butions for and α ≤ 0.05.
Let’s plot the axis of significance:
Since, the null hypothesis should be rejected and the 

Significance area

 

Kolmogorov test  
Kolmogorov goodness-of-fit test is designed to test the 

hypothesis that the sample belongs to some distribution 
law, i.e. to check that the empirical distribution corre-
sponds to the expected model.  

In this test, the maximum value of the absolute differ-
ence between the empirical distribution function Fn(x) 
and the corresponding theoretical distribution function 
d = max |Fn(x) – F(x)| is a measure of difference between 
theoretical and empirical distributions. This random vari-
able is denoted as 𝜆𝜆 = 𝐷𝐷√𝑛𝑛 and is called Kolmogorov good-
ness-of-fit -test.  

 
Application of Kolmogorov test  
1. Arrange the results of observations in ascending or-

der: 𝑥𝑥� ≤ 𝑥𝑥� ≤ ⋯ ≤ 𝑥𝑥� or represent them as an interval 
variational array.  

2. Calculate the empirical relative frequencies for each 
rank by the formula:  
 𝑓𝑓� = ��

�
 (6) 

3. Determine the values of the empirical distribution 
function 𝐹𝐹�(𝑥𝑥) by calculating the accumulated empirical 
relative frequencies by the formula:  

 jfff jj  1  (7) 

where ∑ 𝑓𝑓� is the relative frequency accumulated in the previous 
ranks; j is the order number of the rank;  

The obtained values ∑ 𝑓𝑓� is empirical distribution 
function.  

4. Determine the corresponding values of the assumed 
theoretical distribution function by counting the accumu-
lated theoretical relative frequencies for each rank by the 
formula:  
 ∑ 𝑓𝑓�

����� = ∑ 𝑓𝑓�
����� + 𝑓𝑓�

����� (8) 

where ∑ 𝑓𝑓�
�����  is the theoretical relative frequency accumulated 

in the previous ranks.  

5. Calculate the absolute differences between the em-
pirical and theoretical accumulated relative frequencies for 
each rank. Designate them as d.  

6. Determine the largest absolute difference 𝑑𝑑���.  
7. Using the table of Kolmogorov test critical values [9, 

10, 11, 12], for a given significance level  and a number 
of observations n, determine the critical value 𝑑𝑑��.  

If n > 100, then 𝑑𝑑�� is calculated by the formula:  

 𝑑𝑑�� = �
�.��
√�

 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼  ≤  0.05
�.��
√�

 𝑓𝑓𝑓𝑓𝑓𝑓 𝛼𝛼  ≤  0.01
 (9) 

If 𝑑𝑑���  𝑑𝑑��, then the null hypothesis is rejected: dif-
ferences between distributions are significant.  

If 𝑑𝑑��� < 𝑑𝑑��, then it is considered that there is no rea-
son for rejecting the null hypothesis, i.e. the difference be-
tween the empirical and theoretical distribution function 
is not significant.  

 
Limitations of test  
Ranks should be arranged in ascending order.  
 
Example. When weighing the fattened young cattle 

(103 animals) delivered to the meat processing plant, the 
following primary (raw) array was obtained according to 
live weight (kg):  

 

413 454 419 412 427 435 404 430 421 399 414 386 
428 441 397 417 418 423 420 416 407 427 428 417 
398 424 419 401 424 411 426 380 419 406 410 409 
416 410 403 426 407 400 423 425 394 432 409 418 
419 388 423 434 402 431 405 436 405 424 405 412 
413 444 392 411 428 394 433 395 433 420 430 398 
437 422 394 416 424 434 407 443 406 422 414 429 
417 406 419 429 406 388 421 415 417 394 431 411 
422 410 432 409 439 421 414      

 

Determine whether the data obtained are normally dis-
tributed or not at a significance level   0.05.  

Solution. Let’s rearrange the primary array into the 
variational array (Table 8).  

Table 8. Variational array by the live weight of young cattle 
when delivered to a meat processing plant  

W 380-
389 

390-
399 

400-
409 

410-
419 

420-
429 

430-
439 

440-
449 

450-
459 Sum 

f 4 10 16 30 26 13 3 1 n=103 
 

Let’s determine empirical relative frequencies for each 
rank by the formula:  

𝑓𝑓� = ��

�
, 

where 𝑚𝑚�  is the frequency of a given number of points, n is the 
total number of points appearances.  

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

4
103

= 0.039 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

10
103

= 0.097 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

16
103

= 0.155 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

30
103

= 0.291 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

26
103

= 0.252 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

13
103

= 0.126 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

3
103

= 0.029 

𝑓𝑓� =
𝑚𝑚�

𝑛𝑛
=

1
103

= 0.0097 

 

Let’s determine accumulated empirical relative fre-
quencies by the formula:  

jjj fff   1  

where ∑ 𝑓𝑓� is the relative frequency accumulated in the previous 
ranks; j is the order number of the rank.  

� 𝑓𝑓� = 𝑓𝑓� = 0.039 

� 𝑓𝑓��� = � 𝑓𝑓� + 𝑓𝑓� = 0.039 + 0.097 = 0.136 

� 𝑓𝑓����� = � 𝑓𝑓��� + 𝑓𝑓� = 0.136 + 0.155 = 0.291 

� 𝑓𝑓������� = � 𝑓𝑓����� + 𝑓𝑓� = 0.291 + 0.291 = 0.582 

� 𝑓𝑓��������� = � 𝑓𝑓������� + 𝑓𝑓� = 0.582 + 0.252 =

= 0.834 

� 𝑓𝑓����������� = � 𝑓𝑓��������� + 𝑓𝑓� =

= 0.834 + 0.126 = 0.960 

� 𝑓𝑓������������� = � 𝑓𝑓����������� + 𝑓𝑓� =

= 0.960 + 0.029 = 0.989 

� 𝑓𝑓��������������� = � 𝑓𝑓������������� + 𝑓𝑓� =

= 0.989 + 0.0097 = 0.9987 ≈ 1 
 
Let's determine theoretical relative frequencies for each 

rank. For the 1st rank, the theoretical relative frequency is 
calculated by the formula:  

𝑓𝑓�
����� = �

�
, 

where k is the number of ranks (k = 8).  

𝑓𝑓�
����� = �

�
= �

�
= 0.125. 

This theoretical relative frequency applies to all ranks.  
Let's determine accumulated theoretical relative fre-

quencies.  

� 𝑓𝑓�
����� = 𝑓𝑓�

����� = 0.125; 

� 𝑓𝑓���
����� = � 𝑓𝑓�

����� + 𝑓𝑓�
����� = 0.125 + 0.125 =

= 0.250 

� 𝑓𝑓�����
����� = � 𝑓𝑓���

����� + 𝑓𝑓�
����� = 0.250 + 0.125 =

= 0.375 

� 𝑓𝑓�������
����� = � 𝑓𝑓�����

����� + 𝑓𝑓�
����� = 0.375 + 0.125 =

= 0.500 

� 𝑓𝑓���������
����� = � 𝑓𝑓�������

����� + 𝑓𝑓�
����� =

= 0.500 + 0.125 = 0.625 

� 𝑓𝑓�����������
����� = � 𝑓𝑓���������

����� + 𝑓𝑓�
����� =

= 0.625 + 0.125 = 0.750 

� 𝑓𝑓�������������
����� = � 𝑓𝑓�����������

����� + 𝑓𝑓�
����� =

= 0.750 + 0.125 = 0.875 

� 𝑓𝑓���������������
����� = � 𝑓𝑓�������������

����� + 𝑓𝑓�
����� =

= 0.875 + 0.125 = 1 
Calculate the absolute differences between the accumu-

lated empirical and theoretical frequencies:  

𝑑𝑑� = �� 𝑓𝑓� − � 𝑓𝑓�
������ =  |0.039 − 0.125| = 0.086; 

𝑑𝑑� = �� 𝑓𝑓� − � 𝑓𝑓�
������ = |0.136 − 0.250| = 0.114; 

𝑑𝑑� = �� 𝑓𝑓� − � 𝑓𝑓�
������ = |0.291 − 0.375| = 0.084; 

𝑑𝑑� = �� 𝑓𝑓� − � 𝑓𝑓�
������ = |0.582 − 0.500| = 0.082; 

𝑑𝑑� = �� 𝑓𝑓� − � 𝑓𝑓�
������ = |0.834 − 0.625| = 0.209; 

𝑑𝑑� = �� 𝑓𝑓� − � 𝑓𝑓�
������ = |0.960 − 0.750| = 0.210; 

𝑑𝑑� = �� 𝑓𝑓� − � 𝑓𝑓�
������ = |0.989 − 0.875| = 0.114; 

𝑑𝑑� = �� 𝑓𝑓� − � 𝑓𝑓�
������ = |1 − 1| = 0. 

 

The results are shown in Table 9.  
 

Table 9. Calculation results  
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1 4 0.039 0.039 0.125 0.086 
2 10 0.097 0.136 0.250 0.114 
3 16 0.155 0.291 0.375 0.084 
4 30 0.291 0.582 0.500 0.082 
5 26 0.252 0.834 0.625 0.209 
6 13 0.126 0.960 0.750 0.210 
7 3 0.029 0.989 0.875 0.114 
8 1 0.0097 1 1 0 

Sums 103 1    
 

Let’s determine the largest absolute difference 𝑑𝑑��� 
(yellow color cell).  

Since in this problem n > 100, then the critical value 𝑑𝑑�� 
is calculated by the formula (9) for a significance level 
  0.05:  

𝑑𝑑�� =
1.36
√𝑛𝑛

=
1.36

√103
= 0.134 

Let’s plot the axis of significance:  
 

Significance area Insignificance area 

 𝑑𝑑��  = 0.134             = 0.210 
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alternative hypothesis should be accepted, i. e. the depen-
dence of preference in choosing a further education on the 
gender of the respondent was proved.

In the studies [31–35], chi-squared test was used. The 
study [31] examined the association of interleukin-6 
(IL-6) (IL-6–174G/C), transforming growth factor-beta 1 
(TGF-beta1–29C/T) and calmodulin 1 gene. 16C/T-poly-
morphism (CALM1–16C/T) was clinically determined in 
Pakistani patients with osteoarthritis and corresponding 
control group. The study included 295 subjects, including 
100 patients with osteoarthritis, 105 patients with predis-
position to osteoarthritis and 90 patients from the control 
group. The study design was based on biochemical analy-
sis of osteoarthritis using hyaluronic acid serum enzyme-
linked immunosorbent assay and genetic analysis based 
on PCR with an amplification-resistant mutation system. 
Allele probabilities were statistically estimated using Pear-
son’s chi-squared test. The authors [32] studied the role and 
interaction of proteins involved in the control and stimula-
tion of neurotransmission in predisposition to migraine. 
The study was performed on 183 migraineurs (148 women 
and 35 men) and 265 non-migraine controls (202 women 
and 63 men). Labeling of single nucleotide polymorphisms 
of neurexin was carried out to assess the association be-
tween neurexin and predisposition to migraine. Chi-
squared test was used to compare allele frequencies in test 
cases and controls, and odds ratios were estimated with 95% 
confidence intervals. The authors [33] present a retrospec-
tive crossover observational study of the epidemiological 
profile of all dengue cases confirmed and reported to the 
Minister of Health in Pernambuco between 2015 and 2017. 
The data include all municipalities of Pernambuco with the 
exception of Fernando de Noronha. People infected with 
dengue were classified according to the type of dengue 
fever (without and with the symptoms or severe dengue), 
age, sex, ethnicity, and intermediate geographic region of 
residence (Recife, Caruaru, Serra Talhada, or Petrolina). 
The distribution of cases by years was estimated using 
chi-squared test. The aim of the study [34] was to evaluate 
eating behavior, health-related and nutrition-related prob-
lems among students with symptoms of orthorexia nervo-
sa. The participants were 1120 college students from seven 
universities in Poland studying health-related (n=547) and 
other specialties (n=573). Students were examined with 
ORTO-15 test, the health problems scale and the food in-
take frequencies questionnaire. Then, based on principal 
component analysis, eight nutrition patterns were derived 
(“sweets and snacks”, “legumes and nuts”, “fruits and veg-
etables”, “refined breads and animal fats”, “dairy products 
and eggs”, “fish”, “meat”, “fruit and vegetable juices”). Pear-
son’s correlation, Pearson’s chi-squared test, Student t-test 
and one-sided ANOVA were used for further analysis. In 
the work [35], the authors studied the potential roles and 
mechanisms of si-STOML2 (stomatin-like protein 2)  in 
the migration and invasion of human hepatoma LM3 cells. 
Stomatin-like protein 2 expression levels in tissues and 

cells were separately analyzed by quantitative real-time 
PCR (qRT-PCR) and Western blotting. Cell viability, mi-
gration and invasion were assessed using the cell count-8 
kit, wound healing and transwell assay kit, respectively. 
mRNA and various protein factors levels were separately 
measured by qRT-PCR and Western blotting. The correla-
tion analysis between the expression of stomatin-like pro-
tein 2 and the clinical/pathological features of liver cancer 
patients was assessed using the chi-squared test.

Kolmogorov-Smirnov test
Kolmogorov-Smirnov test statistics is the following:
,    (14)
where are empirical distribution functions from two 

samples with sizes. Let’s assume that the functions are con-
tinuous.

Application of Kolmogorov-Smirnov test
1. Arrange the results of observations in ascending or-

der: or represent them as an interval variational array.
2. Calculate the empirical relative frequencies for each 

rank for distribution 1 by the formula:
where is the empirical frequency in the given rank;
is the number of observations in the sample.
3. Calculate the empirical relative frequencies for each 

rank for distribution 2 by the formula:
,
where is the empirical frequency in the given rank;
is the number of observations in the sample.
4. Calculate the accumulated empirical relative fre-

quencies for distribution 1 by the formula:
jjj fff 1111 +=∑∑ −

where ∑ −11 jf is the relative frequency accumulated in 
the previous ranks;

j is the order number of the rank;
is the relative frequency of the given rank.
5. Calculate the accumulated empirical relative fre-

quencies for distribution 2 by the same formula.
jjj fff 2122 +=∑∑ −

where ∑ −12 jf is the relative frequency accumulated 
in the previous ranks;

is the relative frequency of the given rank.
6. Calculate the absolute differences between the accu-

mulated relative frequencies for each rank. Designate them 
as d. Determine the largest absolute difference.

7. Calculate by the formula:
(15)
where is the number of observations in the first sample;
is the number of observations in the second sample.
8. Using the table of critical values [9, 10, 11, 12], for a 

given significance level α, determine λcr. If, then the differ-
ences between the distributions are significant. If, then the 
differences between the distributions are not significant.

Limitations of Kolmogorov-Smirnov test
1. When comparing two empirical distributions, it is 

necessary that n1, n2 ≥ 50.
2. Ranks must be arranged in ascending or descending 

order by some indicator. We cannot accumulate frequen-

 

Since 𝑑𝑑���  𝑑𝑑��, then the null hypothesis is rejected, 
i.e. the empirical distribution for the live weight of cattle 
delivered to a meat processing plant differs from the nor-
mal (uniform) distribution.  

 
Let’s give examples for the use of Kolmogorov test in 

scientific research. The article [25] analyzed the growth of 
rice, wheat and common food grains in India for the pe-
riod from 1950 to 2019. The distribution was assessed us-
ing Kolmogorov test. It was found that the availability of 
rice (70.05 kg/year), wheat (70.73 kg/year) and total grains 
(182.96 kg/year) will decrease in 2021 compared to this 
year. The article [26] analyzed a questionnaire survey of 
227 respondents regarding purchasing preferences for or-
ganic food in Slovakia. To achieve the goal and provide a 
deeper analysis of the results, 3 assumptions and 5 hypoth-
eses were made. According to the survey results, 65% of 
respondents buy organic products, of which 39% buy or-
ganic products at least once a week. Up to 98% of respond-
ents have already heard about the concept of organic food 
and know what it means. 37% of respondents buy mostly 
organic fruits and vegetables; 18% of respondents buy 
mostly organic meat and meat products, and 13% of re-
spondents prefer organic dairy products. The most pre-
ferred place to buy organic products are specialized stores 
(36%); buying organic products directly from the manu-
facturer is the most popular way for 29% of respondents; 
hypermarkets and supermarkets are a favorite place to buy 
organic products for 19% of respondents; and 12% of re-
spondents buy organic products mainly in farmers' mar-
kets. Only 4% of respondents prefer another way to buy 
organic products. The quality of organic products and the 
absence of pesticides are the most important criteria for 
purchasing organic products (36%). The results of the 
study were evaluated using the goodness-of-fit chi-
squared test and Kolmogorov test, and the following con-
clusion was made: there is a difference in the preferences 
of the respondents. In Slovakia, there is a relationship be-
tween consumer preferences for organic food and tradi-
tional food, and there is a strong preference to buy organic 
food. The aim of the study [27] was to present a correct 
model for probability distribution based on data obtained 
from surveys on the temperature of food storage in house-
hold refrigerators at home. The temperature in household 
refrigerators was determined as a risk factor for foodborne 
disease outbreaks for microbial risk assessment. Tempera-
ture was measured by visiting 139 homes directly with a 
data logger from May to September 2009. The overall av-
erage temperature for all refrigerators participating in the 
survey was 3.53 ± 2.96 °C, with 23.6% of refrigerators hav-
ing temperatures above 5 °C. Probability distributions 
were generated from the measured temperature data. Sta-
tistical ranking was determined by Kolmogorov goodness-
of-fit test or Anderson-Darling test to determine the ap-
propriate probability distribution model. This result 

showed that the LogLogistic distribution (-10.407, 13.616, 
8.6107) was the most appropriate for the microbial risk as-
sessment model.  

The aim of the work [28] was to study the strong Mar-
kov property for stochastic differential equations con-
trolled by G-Brownian motion (G-SDE). First, the authors 
extended the conditional G-expectancy of deterministic 
time to optional points of time. The strong Markov prop-
erty for the G-SDE was obtained using Kolmogorov tight-
ness criterion. The article [29] considers the process of the 
defect appearance in the body of a workpiece obtained by 
casting. The medium with many randomly distributed dis-
continuities was schematically a regular structure formed 
by a set of elements in the form of a regular tetrahedron 
with spherical depressions at the vertices. The proposed 
technique makes it possible to create a model of a contin-
uous homogeneous medium that is equivalent in its defor-
mation properties to the original discontinuous material. 
Using this approach, a power approximation of the exten-
sion curve for a model medium was obtained. The rupture 
of the material was fixed using Kolmogorov plastic defor-
mation test. This test was used in the evaluation of the limit 
state of the valve chamber under operating conditions.  

 
Nonparametric tests for homogeneity  
Hypotheses of homogeneity are hypotheses assuming 

that the samples under study are taken from the same gen-
eral population.  

Let there be two independent samples with sizes 
𝑛𝑛� and 𝑛𝑛� obtained from populations with unknown the-
oretical distribution functions 𝐹𝐹�(𝑥𝑥) and 𝐹𝐹�(𝑥𝑥). Hypothe-
ses are stated:  

𝐻𝐻�: Empirical distribution 1 does not differ from em-
pirical distribution 2, i.e. 𝐹𝐹�(𝑥𝑥) = 𝐹𝐹�(𝑥𝑥).  

𝐻𝐻�: Empirical distribution 1 differs from empirical 
distribution 2, i.e. 𝐹𝐹�(𝑥𝑥) ≠ 𝐹𝐹�(𝑥𝑥).  

 
Pearson’s chi-squared test for homogeneity  
Pearson's chi-squared test may be used to evaluate the 

homogeneity of two or more independent samples, i.e. to 
test the hypothesis that there are no differences between two 
and more empirical distributions of the same indicator. 
Source data should be presented in the form of Table 10:  

 
Table 10. Source data template  
(cross-tab table or contingency table)  

Empirical 
frequencies  

Indicator ranking  
Sum 

1 … j … k 

Ranks of the 
indicator 

1       
…       
i       

…       
c       

Sum       
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cies by the ranks that differ only qualitatively and do not 
represent a scale of order.

Example. To evaluate the effectiveness of a drug, one 
group of subjects was given a test drug tested on ani-
mals, and the other group of subjects was given a placebo 
(a physiologically inert substance, the positive therapeutic 
effect of which is associated with the patient’s subconscious 
psychological expectation). Table 14 represents data on the 
number of occurrences of influenza symptoms over a two-
year period in the group taking prophylactic drug at the 
beginning of the period and in the group taking placebo 
[12].

Table 14. Given data for the problem

Number of diseases
Number of patients taking 
the drug

Number of patients taking 
placebo

0 32 26
1 26 30
2 15 11
3 6 14
4 and more 6 19
Sum 85 100

Can we state that at a significance level α ≤ 0.05 the ef-
fect of the drug is sufficiently greater than of placebo?

Solution. Let’s state the hypotheses:
: Empirical distribution 1 differs from empirical distri-

bution 2, i. e. the effect of the drug significantly exceeds the 
effect of the placebo.

: Empirical distribution 1 does not differ from empirical 
distribution 2, i. e. the effect of the drug does not signifi-
cantly exceed the effect of the placebo.

Let’s determine empirical relative frequencies for each 
rank for sample 1 (first test) by the formula:

;
etc.
The results of the calculations are represented in Table 

15.
Table 15. Calculation results

Number 
of 
diseases

Empirical 
frequencies

Empirical relative 
frequencies

Accumulated empirical 
relative frequencies Difference 

∑∑ − jj ff 21∑ jf 1 ∑ jf 2

0 32 26 0.3765 0.2600 0.3765 0.2600 0.1165
1 26 30 0.3059 0.3000 0.6824 0.5600 0.1224
2 15 11 0.1765 0.1100 0.8588 0.6700 0.1888
3 6 14 0.0706 0.1400 0.9294 0.8100 0.1194
4 and 
more 6 19 0.0706 0.1900 1.0000 1.000 0

Sum 85 100 1 1
Let’s determine empirical relative frequencies for each 

rank for sample 2 (second test) by the formula:
;
etc.
Let’s calculate the accumulated empirical rela-

tive frequencies for sample 1 by the formula: 
jjj fff 1111 +=∑∑ − .

etc.
Let’s calculate the accumulated empirical relative fre-

quencies for sample 2 by the same formula:
jjj fff 2122 +=∑∑ − .

etc.
Let’s determine the absolute differences between the ac-

cumulated empirical relative frequencies by the formula:
∑∑ −= jjj ffd 21 .

;
etc.
From Table 15, let’s determine the largest absolute dif-

ference. This is (highlighted in yellow).
Let’s calculate:
Using the table of critical values [9, 10, 11, 12], for a given 

significance level α ≤ 0.05, let’s determine.
Let’s plot the axis of significance:

 

Since 𝑑𝑑���  𝑑𝑑��, then the null hypothesis is rejected, 
i.e. the empirical distribution for the live weight of cattle 
delivered to a meat processing plant differs from the nor-
mal (uniform) distribution.  

 
Let’s give examples for the use of Kolmogorov test in 

scientific research. The article [25] analyzed the growth of 
rice, wheat and common food grains in India for the pe-
riod from 1950 to 2019. The distribution was assessed us-
ing Kolmogorov test. It was found that the availability of 
rice (70.05 kg/year), wheat (70.73 kg/year) and total grains 
(182.96 kg/year) will decrease in 2021 compared to this 
year. The article [26] analyzed a questionnaire survey of 
227 respondents regarding purchasing preferences for or-
ganic food in Slovakia. To achieve the goal and provide a 
deeper analysis of the results, 3 assumptions and 5 hypoth-
eses were made. According to the survey results, 65% of 
respondents buy organic products, of which 39% buy or-
ganic products at least once a week. Up to 98% of respond-
ents have already heard about the concept of organic food 
and know what it means. 37% of respondents buy mostly 
organic fruits and vegetables; 18% of respondents buy 
mostly organic meat and meat products, and 13% of re-
spondents prefer organic dairy products. The most pre-
ferred place to buy organic products are specialized stores 
(36%); buying organic products directly from the manu-
facturer is the most popular way for 29% of respondents; 
hypermarkets and supermarkets are a favorite place to buy 
organic products for 19% of respondents; and 12% of re-
spondents buy organic products mainly in farmers' mar-
kets. Only 4% of respondents prefer another way to buy 
organic products. The quality of organic products and the 
absence of pesticides are the most important criteria for 
purchasing organic products (36%). The results of the 
study were evaluated using the goodness-of-fit chi-
squared test and Kolmogorov test, and the following con-
clusion was made: there is a difference in the preferences 
of the respondents. In Slovakia, there is a relationship be-
tween consumer preferences for organic food and tradi-
tional food, and there is a strong preference to buy organic 
food. The aim of the study [27] was to present a correct 
model for probability distribution based on data obtained 
from surveys on the temperature of food storage in house-
hold refrigerators at home. The temperature in household 
refrigerators was determined as a risk factor for foodborne 
disease outbreaks for microbial risk assessment. Tempera-
ture was measured by visiting 139 homes directly with a 
data logger from May to September 2009. The overall av-
erage temperature for all refrigerators participating in the 
survey was 3.53 ± 2.96 °C, with 23.6% of refrigerators hav-
ing temperatures above 5 °C. Probability distributions 
were generated from the measured temperature data. Sta-
tistical ranking was determined by Kolmogorov goodness-
of-fit test or Anderson-Darling test to determine the ap-
propriate probability distribution model. This result 

showed that the LogLogistic distribution (-10.407, 13.616, 
8.6107) was the most appropriate for the microbial risk as-
sessment model.  

The aim of the work [28] was to study the strong Mar-
kov property for stochastic differential equations con-
trolled by G-Brownian motion (G-SDE). First, the authors 
extended the conditional G-expectancy of deterministic 
time to optional points of time. The strong Markov prop-
erty for the G-SDE was obtained using Kolmogorov tight-
ness criterion. The article [29] considers the process of the 
defect appearance in the body of a workpiece obtained by 
casting. The medium with many randomly distributed dis-
continuities was schematically a regular structure formed 
by a set of elements in the form of a regular tetrahedron 
with spherical depressions at the vertices. The proposed 
technique makes it possible to create a model of a contin-
uous homogeneous medium that is equivalent in its defor-
mation properties to the original discontinuous material. 
Using this approach, a power approximation of the exten-
sion curve for a model medium was obtained. The rupture 
of the material was fixed using Kolmogorov plastic defor-
mation test. This test was used in the evaluation of the limit 
state of the valve chamber under operating conditions.  

 
Nonparametric tests for homogeneity  
Hypotheses of homogeneity are hypotheses assuming 

that the samples under study are taken from the same gen-
eral population.  

Let there be two independent samples with sizes 
𝑛𝑛� and 𝑛𝑛� obtained from populations with unknown the-
oretical distribution functions 𝐹𝐹�(𝑥𝑥) and 𝐹𝐹�(𝑥𝑥). Hypothe-
ses are stated:  

𝐻𝐻�: Empirical distribution 1 does not differ from em-
pirical distribution 2, i.e. 𝐹𝐹�(𝑥𝑥) = 𝐹𝐹�(𝑥𝑥).  

𝐻𝐻�: Empirical distribution 1 differs from empirical 
distribution 2, i.e. 𝐹𝐹�(𝑥𝑥) ≠ 𝐹𝐹�(𝑥𝑥).  

 
Pearson’s chi-squared test for homogeneity  
Pearson's chi-squared test may be used to evaluate the 

homogeneity of two or more independent samples, i.e. to 
test the hypothesis that there are no differences between two 
and more empirical distributions of the same indicator. 
Source data should be presented in the form of Table 10:  

 
Table 10. Source data template  
(cross-tab table or contingency table)  

Empirical 
frequencies  

Indicator ranking  
Sum 

1 … j … k 

Ranks of the 
indicator 

1       
…       
i       

…       
c       

Sum       

 

Such tables are called cross-tab tables or contingency 
tables.  

The algorithm for calculating Pearson’s chi-squared 
test is the same as for Pearson’s goodness-of-fit test (see 
above), but for each cell of the ith row and jth column, its 
own theoretical frequency is determined by the formula:  

 𝑚𝑚��
����� =

∑ ���� ⋅∑ ����

�
, (10) 

where N is the sum of frequencies of the entire contingency 
table; ∑ 𝑚𝑚���  is the sum of frequencies in all cells of the ith row; 
∑ 𝑚𝑚���  is the sum of frequencies in all cells of the jth column.  

Pearson’s chi-squared test is calculated by the formula:  

 𝜒𝜒���
� = ∑ ∑

��������
������

�

���
�����

�
���

�
��� . (11) 

The number of degrees of freedom is calculated by the 
formula:  
 𝑑𝑑𝑑𝑑 = (𝑘𝑘 − 1) ⋅ (𝑐𝑐 − 1) (12) 
where с is the number of ranks for the indicator (number of 
compared distributions).  

If the number of degrees of freedom is equal to 1, i.e., if 
the indicator only takes two values, the adjusting for con-
tinuity is needed. The adjusting for continuity is applied 
under the following conditions:  

1) when the empirical distribution is compared to the 
uniform distribution, and the number of indicator rankings 
k = 2, and the number of degrees of freedom v = k – 1 = 1. 

2) when two empirical distributions are compared, and 
k=2, i.e. number of rows and number of columns is both 
equal to 2 and 𝑣𝑣 = (𝑘𝑘 − 1) ⋅ (𝑐𝑐 − 1) = 1.  

In these cases, it is necessary to reduce the absolute dif-
ference �𝑚𝑚�� − 𝑚𝑚��

������ by 0.5 prior to squaring. 𝜒𝜒���
�  is 

calculated by the formula:  

 𝜒𝜒���
� = ∑ ∑

���������
��������.��

�

���
�����

�
���

�
���  (13) 

Example. During the survey, high school students were 
asked which of the three possible areas of education 
(mathematics, natural sciences or human sciences) they 
would prefer in the future. Among the respondents were 
both young males and young females [30]. The data are 
summarized in Table 11.  

 
Table 11. Given data for the problem  

Empirical frequencies 
Indicator ranking 

Mathe-
matics 

Natural 
sciences 

Human 
sciences 

Ranks of the 
indicator 

Young males 1 18 10 3 
Young females 2 10 9 15 

 
Such table is called a cross-tab table with size of 2 × 3. 
Is it possible to state that at a significance level   0.05 

the preference for one or another area of education is 
somehow related to the gender factor?  

Solution. Let’s state the hypotheses:  
𝐻𝐻�: distribution of preferences for the area of education 

in young males and young females is not significantly dif-
ferent from the random distribution. 

𝐻𝐻�: distribution of preferences for the area of education 
in young males and young females is significantly different 
from the random distribution. 

In Table 12 sums of frequencies are calculated by rows 
and columns.  

 
Table 12. Intermediate cross-tab 𝟐𝟐 × 𝟑𝟑 calculations  

Empirical frequencies 
Indicator ranking 

Sum Mathe-
matics 

Natural 
sciences 

Human 
sciences 

Ranks of the 
indicator 

Young males 1 18 10 3 31 
Young females 2 10 9 15 34 

Sum 28 19 18 65 
 
For each of the cells, a special theoretical frequency re-

lated only to this cell should be calculated by the formula:  

𝑚𝑚��
����� =

∑ ���� ⋅∑ ����

�
. 

There are 65 frequencies in total, of which 28 frequen-
cies correspond to mathematics, 19 frequencies corre-
spond to natural sciences, and 18 frequencies correspond 
to human sciences. The proportion of each education area 
is 28/65, 19/65, 18/65, respectively. In all rows, mathemat-
ics should be 28/65 of all the answers, natural sciences 
should be 19/65, and human sciences should be 18/65. 
Knowing the sums of frequencies for each row, you can 
calculate the theoretical frequencies for each cell.  
𝑚𝑚��

����� = ��⋅��
��

= 13.35; 

𝑚𝑚��
����� = ��⋅��

��
= 9.06; 

𝑚𝑚��
����� = ��⋅��

��
= 8.58; 

𝑚𝑚��
����� = ��⋅��

��
= 14.65; 

𝑚𝑚��
����� = ��⋅��

��
= 9.94; 

𝑚𝑚��
����� = ��⋅��

��
= 9.42. 

Let's complete Table 13.  
 

Table 13. Calculation results  

Rank —  
indicator ranking 𝒎𝒎

𝒊𝒊𝒊𝒊
 

𝒎𝒎
𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕

𝒕𝒕𝒕𝒕
𝒕𝒕  

𝒎𝒎
𝒊𝒊𝒊𝒊

−
𝒎𝒎

𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕
𝒕𝒕𝒕𝒕

𝒕𝒕  

�𝒎𝒎
𝒊𝒊𝒊𝒊

−
𝒎𝒎

𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕
𝒕𝒕𝒕𝒕

𝒕𝒕 �𝟐𝟐  

�𝒎𝒎
𝒊𝒊𝒊𝒊

−
𝒎𝒎

𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕
𝒕𝒕𝒕𝒕

𝒕𝒕 �𝟐𝟐

𝒎𝒎
𝒊𝒊𝒊𝒊𝒕𝒕𝒕𝒕

𝒕𝒕𝒕𝒕
𝒕𝒕

 

Young males — mathematics  18 13.35 4.65 21.59 1.62 
Young males — natural sciences  10 9.06 0.94 0.88 0.10 
Young males — human sciences  3 8.58 -5.58 31.19 3.63 
Young females — mathematics  10 14.65 -4.65 21.59 1.47 
Young females — natural sciences  9 9.94 -0.94 0.88 0.09 
Young females — human sciences  15 9.42 5.58 31.19 3.31 
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𝜒𝜒���
� = 1.62 + 0.10 + 3.63 + 1.47 + 0.09 + 3.31 = 10.22. 

The number of degrees of freedom is calculated by the 
formula:  

𝑣𝑣 = (𝑘𝑘 𝑘 1) ⋅ (𝑐𝑐 𝑘 1) = (3 𝑘 1) ⋅ (2 𝑘 1) = 2 
Using the table of critical values [9, 10, 11, 12], 2 dis-

tributions for 𝑣𝑣 = 2 and   0.05 𝜒𝜒��
� = 5.992.  

Let’s plot the axis of significance:  

 

Since 𝜒𝜒���
� > 𝜒𝜒��

� , the null hypothesis should be re-
jected and the alternative hypothesis should be accepted, 
i.e. the dependence of preference in choosing a further ed-
ucation on the gender of the respondent was proved.  

In the studies [31-35], chi-squared test was used.  
The study [31] examined the association of interleukin-6 
(IL-6) (IL-6-174G/C), transforming growth factor-beta 1 
(TGF-beta1-29C/T) and calmodulin 1 gene. 16C/T-poly-
morphism (CALM1-16C/T) was clinically determined in 
Pakistani patients with osteoarthritis and corresponding 
control group. The study included 295 subjects, including 
100 patients with osteoarthritis, 105 patients with predis-
position to osteoarthritis and 90 patients from the control 
group. The study design was based on biochemical analy-
sis of osteoarthritis using hyaluronic acid serum enzyme-
linked immunosorbent assay and genetic analysis based on 
PCR with an amplification-resistant mutation system. Al-
lele probabilities were statistically estimated using Pear-
son's chi-squared test. The authors [32] studied the role 
and interaction of proteins involved in the control and 
stimulation of neurotransmission in predisposition to mi-
graine. The study was performed on 183 migraineurs (148 
women and 35 men) and 265 non-migraine controls (202 
women and 63 men). Labeling of single nucleotide poly-
morphisms of neurexin was carried out to assess the asso-
ciation between neurexin and predisposition to migraine. 
Chi-squared test was used to compare allele frequencies in 
test cases and controls, and odds ratios were estimated 
with 95% confidence intervals. The authors [33] present a 
retrospective crossover observational study of the epide-
miological profile of all dengue cases confirmed and re-
ported to the Minister of Health in Pernambuco between 
2015 and 2017. The data include all municipalities of Per-
nambuco with the exception of Fernando de Noronha. 
People infected with dengue were classified according to 
the type of dengue fever (without and with the symptoms 
or severe dengue), age, sex, ethnicity, and intermediate ge-
ographic region of residence (Recife, Caruaru, Serra 
Talhada, or Petrolina). The distribution of cases by years 
was estimated using chi-squared test. The aim of the study 

[34] was to evaluate eating behavior, health-related and 
nutrition-related problems among students with symp-
toms of orthorexia nervosa. The participants were 1120 
college students from seven universities in Poland study-
ing health-related (n=547) and other specialties (n=573). 
Students were examined with ORTO-15 test, the health 
problems scale and the food intake frequencies question-
naire. Then, based on principal component analysis, eight 
nutrition patterns were derived (“sweets and snacks”, “leg-
umes and nuts”, “fruits and vegetables”, “refined breads 
and animal fats”, “dairy products and eggs”, “fish”, “meat”, 
“fruit and vegetable juices”). Pearson's correlation, Pear-
son's chi-squared test, Student t-test and one-sided 
ANOVA were used for further analysis. In the work [35], 
the authors studied the potential roles and mechanisms of 
si-STOML2 (stomatin-like protein 2) in the migration and 
invasion of human hepatoma LM3 cells. Stomatin-like 
protein 2 expression levels in tissues and cells were sepa-
rately analyzed by quantitative real-time PCR (qRT-PCR) 
and Western blotting. Cell viability, migration and inva-
sion were assessed using the cell count-8 kit, wound heal-
ing and transwell assay kit, respectively. mRNA and vari-
ous protein factors levels were separately measured by 
qRT-PCR and Western blotting. The correlation analysis 
between the expression of stomatin-like protein 2 and the 
clinical/pathological features of liver cancer patients was 
assessed using the chi-squared test.  

 
Kolmogorov-Smirnov test  
Kolmogorov-Smirnov test statistics is the following:  

 𝜆𝜆� = �
����

�����
⋅ 𝑚𝑚𝑚𝑚𝑚𝑚|𝐹𝐹�(𝑚𝑚) 𝑘 𝐹𝐹�(𝑚𝑚)|, (14) 

where 𝐹𝐹�(𝑚𝑚) and 𝐹𝐹�(𝑚𝑚) are empirical distribution functions 
from two samples with sizes 𝑛𝑛� and 𝑛𝑛�. Let’s assume that the 
functions 𝐹𝐹�(𝑚𝑚) and 𝐹𝐹�(𝑚𝑚) are continuous.  

 
Application of Kolmogorov-Smirnov test  
1. Arrange the results of observations in ascending or-

der: 𝑚𝑚� ≤ 𝑚𝑚� ≤ ⋯ ≤ 𝑚𝑚� or represent them as an interval 
variational array.  

2. Calculate the empirical relative frequencies for each 
rank for distribution 1 by the formula:  

𝑓𝑓�� =
𝑚𝑚��

𝑛𝑛�
 

where 𝑚𝑚�� is the empirical frequency in the given rank; 𝑛𝑛� is the 
number of observations in the sample.  

3. Calculate the empirical relative frequencies for each 
rank for distribution 2 by the formula:  

𝑓𝑓�� = ���

��
, 

where 𝑚𝑚�� is the empirical frequency in the given rank;  𝑛𝑛� is the 
number of observations in the sample.  

4. Calculate the accumulated empirical relative fre-
quencies for distribution 1 by the formula:  

Significance area Insignificance area 

 𝜒𝜒��
�  = 5.992           𝜒𝜒���

�  = 10.22 
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𝜒𝜒���
� = 1.62 + 0.10 + 3.63 + 1.47 + 0.09 + 3.31 = 10.22. 

The number of degrees of freedom is calculated by the 
formula:  

𝑣𝑣 = (𝑘𝑘 𝑘 1) ⋅ (𝑐𝑐 𝑘 1) = (3 𝑘 1) ⋅ (2 𝑘 1) = 2 
Using the table of critical values [9, 10, 11, 12], 2 dis-

tributions for 𝑣𝑣 = 2 and   0.05 𝜒𝜒��
� = 5.992.  

Let’s plot the axis of significance:  

 

Since 𝜒𝜒���
� > 𝜒𝜒��

� , the null hypothesis should be re-
jected and the alternative hypothesis should be accepted, 
i.e. the dependence of preference in choosing a further ed-
ucation on the gender of the respondent was proved.  

In the studies [31-35], chi-squared test was used.  
The study [31] examined the association of interleukin-6 
(IL-6) (IL-6-174G/C), transforming growth factor-beta 1 
(TGF-beta1-29C/T) and calmodulin 1 gene. 16C/T-poly-
morphism (CALM1-16C/T) was clinically determined in 
Pakistani patients with osteoarthritis and corresponding 
control group. The study included 295 subjects, including 
100 patients with osteoarthritis, 105 patients with predis-
position to osteoarthritis and 90 patients from the control 
group. The study design was based on biochemical analy-
sis of osteoarthritis using hyaluronic acid serum enzyme-
linked immunosorbent assay and genetic analysis based on 
PCR with an amplification-resistant mutation system. Al-
lele probabilities were statistically estimated using Pear-
son's chi-squared test. The authors [32] studied the role 
and interaction of proteins involved in the control and 
stimulation of neurotransmission in predisposition to mi-
graine. The study was performed on 183 migraineurs (148 
women and 35 men) and 265 non-migraine controls (202 
women and 63 men). Labeling of single nucleotide poly-
morphisms of neurexin was carried out to assess the asso-
ciation between neurexin and predisposition to migraine. 
Chi-squared test was used to compare allele frequencies in 
test cases and controls, and odds ratios were estimated 
with 95% confidence intervals. The authors [33] present a 
retrospective crossover observational study of the epide-
miological profile of all dengue cases confirmed and re-
ported to the Minister of Health in Pernambuco between 
2015 and 2017. The data include all municipalities of Per-
nambuco with the exception of Fernando de Noronha. 
People infected with dengue were classified according to 
the type of dengue fever (without and with the symptoms 
or severe dengue), age, sex, ethnicity, and intermediate ge-
ographic region of residence (Recife, Caruaru, Serra 
Talhada, or Petrolina). The distribution of cases by years 
was estimated using chi-squared test. The aim of the study 

[34] was to evaluate eating behavior, health-related and 
nutrition-related problems among students with symp-
toms of orthorexia nervosa. The participants were 1120 
college students from seven universities in Poland study-
ing health-related (n=547) and other specialties (n=573). 
Students were examined with ORTO-15 test, the health 
problems scale and the food intake frequencies question-
naire. Then, based on principal component analysis, eight 
nutrition patterns were derived (“sweets and snacks”, “leg-
umes and nuts”, “fruits and vegetables”, “refined breads 
and animal fats”, “dairy products and eggs”, “fish”, “meat”, 
“fruit and vegetable juices”). Pearson's correlation, Pear-
son's chi-squared test, Student t-test and one-sided 
ANOVA were used for further analysis. In the work [35], 
the authors studied the potential roles and mechanisms of 
si-STOML2 (stomatin-like protein 2) in the migration and 
invasion of human hepatoma LM3 cells. Stomatin-like 
protein 2 expression levels in tissues and cells were sepa-
rately analyzed by quantitative real-time PCR (qRT-PCR) 
and Western blotting. Cell viability, migration and inva-
sion were assessed using the cell count-8 kit, wound heal-
ing and transwell assay kit, respectively. mRNA and vari-
ous protein factors levels were separately measured by 
qRT-PCR and Western blotting. The correlation analysis 
between the expression of stomatin-like protein 2 and the 
clinical/pathological features of liver cancer patients was 
assessed using the chi-squared test.  

 
Kolmogorov-Smirnov test  
Kolmogorov-Smirnov test statistics is the following:  

 𝜆𝜆� = �
����

�����
⋅ 𝑚𝑚𝑚𝑚𝑚𝑚|𝐹𝐹�(𝑚𝑚) 𝑘 𝐹𝐹�(𝑚𝑚)|, (14) 

where 𝐹𝐹�(𝑚𝑚) and 𝐹𝐹�(𝑚𝑚) are empirical distribution functions 
from two samples with sizes 𝑛𝑛� and 𝑛𝑛�. Let’s assume that the 
functions 𝐹𝐹�(𝑚𝑚) and 𝐹𝐹�(𝑚𝑚) are continuous.  

 
Application of Kolmogorov-Smirnov test  
1. Arrange the results of observations in ascending or-

der: 𝑚𝑚� ≤ 𝑚𝑚� ≤ ⋯ ≤ 𝑚𝑚� or represent them as an interval 
variational array.  

2. Calculate the empirical relative frequencies for each 
rank for distribution 1 by the formula:  

𝑓𝑓�� =
𝑚𝑚��

𝑛𝑛�
 

where 𝑚𝑚�� is the empirical frequency in the given rank; 𝑛𝑛� is the 
number of observations in the sample.  

3. Calculate the empirical relative frequencies for each 
rank for distribution 2 by the formula:  

𝑓𝑓�� = ���

��
, 

where 𝑚𝑚�� is the empirical frequency in the given rank;  𝑛𝑛� is the 
number of observations in the sample.  

4. Calculate the accumulated empirical relative fre-
quencies for distribution 1 by the formula:  

Significance area Insignificance area 

 𝜒𝜒��
�  = 5.992           𝜒𝜒���

�  = 10.22 

 

jjj fff 1111    

where  11 jf is the relative frequency accumulated in the 
previous ranks; j is the order number of the rank; 𝑓𝑓�� is the rela-
tive frequency of the given rank.  

5. Calculate the accumulated empirical relative fre-
quencies for distribution 2 by the same formula.  

jjj fff 2122     

where  12 jf is the relative frequency accumulated in the 
previous ranks; 𝑓𝑓�� is the relative frequency of the given rank.  

6. Calculate the absolute differences between the accu-
mulated relative frequencies for each rank. Designate them 
as d. Determine the largest absolute difference 𝑑𝑑���.  

7. Calculate 𝜆𝜆����  by the formula:  

 𝜆𝜆���� = 𝑑𝑑�
��⋅��
��������

 (15) 

where 𝑛𝑛� is the number of observations in the first sample; 𝑛𝑛� is 
the number of observations in the second sample.  

8. Using the table of critical values [9, 10, 11, 12], for a 
given significance level , determine cr. If 𝜆𝜆���� ≥ 𝜆𝜆��, 
then the differences between the distributions are signifi-
cant. If 𝜆𝜆���� < 𝜆𝜆��, then the differences between the dis-
tributions are not significant.  

 
Limitations of Kolmogorov-Smirnov test  
1. When comparing two empirical distributions, it is 

necessary that n1, n2  50.  
2. Ranks must be arranged in ascending or descending 

order by some indicator. We cannot accumulate frequen-
cies by the ranks that differ only qualitatively and do not 
represent a scale of order.  

 
Example. To evaluate the effectiveness of a drug, one 

group of subjects was given a test drug tested on animals, 
and the other group of subjects was given a placebo (a 
physiologically inert substance, the positive therapeutic ef-
fect of which is associated with the patient's subconscious 
psychological expectation). Table 14 represents data on 
the number of occurrences of influenza symptoms over a 
two-year period in the group taking prophylactic drug at 
the beginning of the period and in the group taking pla-
cebo [12].  

 

Table 14. Given data for the problem  

Number of diseases  
Number of patients 

taking the drug  
Number of patients 

taking placebo  
𝒎𝒎𝟏𝟏𝟏𝟏 𝒎𝒎𝟐𝟐𝟏𝟏 

0 32 26 
1 26 30 
2 15 11 
3 6 14 

4 and more  6 19 
Sum 85 100 

Can we state that at a significance level   0.05 the ef-
fect of the drug is sufficiently greater than of placebo?  

 
Solution. Let’s state the hypotheses:  
𝐻𝐻�: Empirical distribution 1 differs from empirical dis-

tribution 2, i.e. the effect of the drug significantly exceeds 
the effect of the placebo.  

𝐻𝐻�: Empirical distribution 1 does not differ from em-
pirical distribution 2, i.e. the effect of the drug does not 
significantly exceed the effect of the placebo.  

Let’s determine empirical relative frequencies for each 
rank for sample 1 (first test) by the formula:  

𝑓𝑓�� =
𝑚𝑚��

𝑛𝑛�
 

𝑓𝑓�� =
𝑚𝑚��

𝑛𝑛�
=
32
85

= 0.3765; 

𝑓𝑓�� =
𝑚𝑚��

𝑛𝑛�
=
26
85

= 0.3059 

etc.  
The results of the calculations are represented in Table 15.  
 

Table 15. Calculation results  

N
um

be
r o

f 
di

se
as

es
 

Empiri-
cal fre-

quencies 

Empirical 
relative 

frequencies 

Accumulated 
empirical relative 

frequencies 
Difference 

  jj ff 21
 

𝒎𝒎𝟏𝟏𝟏𝟏 𝒎𝒎𝟐𝟐𝟏𝟏 𝒇𝒇𝟏𝟏𝟏𝟏 𝒇𝒇𝟐𝟐𝟏𝟏  jf 1
  jf 2  

0 32 26 0.3765 0.2600 0.3765 0.2600 0.1165 

1 26 30 0.3059 0.3000 0.6824 0.5600 0.1224 

2 15 11 0.1765 0.1100 0.8588 0.6700 0.1888 

3 6 14 0.0706 0.1400 0.9294 0.8100 0.1194 

4 and 
more 6 19 0.0706 0.1900 1.0000 1.000 0 

Sum 85 100 1 1    
 
Let’s determine empirical relative frequencies for each 

rank for sample 2 (second test) by the formula: 

𝑓𝑓�� =
𝑚𝑚��

𝑛𝑛�
 

𝑓𝑓�� =
𝑚𝑚��

𝑛𝑛�
=

26
100

= 0.2600; 

𝑓𝑓�� =
𝑚𝑚��

𝑛𝑛�
=

30
100

= 0.3000 

etc. 
Let’s calculate the accumulated empirical relative fre-

quencies for sample 1 by the formula: 

jjj fff 1111    . 

�𝑓𝑓�� = 𝑓𝑓�� = 0.3765 

�𝑓𝑓�� =�𝑓𝑓�� + 𝑓𝑓�� = 0.3765 + 0.3059 = 0.6824 

etc.  
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Since λ′exp < λcr, then the null hypothesis is not rejected, 
i. e. the effect of the drug significantly exceeds the effect of 
the placebo.

In the studies [36–44], Kolmogorov-Smirnov test was 
used. The study [36] aimed to determine the relationship 
between the management of household solid waste (HSW) 
and non-household solid waste (NHSW) (X  variable) in 
Huancavelica County and municipal government (Y vari-
able) in 2016. The population and sample were 12,249 and 
140 people, respectively. The collected data were analyzed 
using Kolmogorov-Smirnov test. The paper [37] represents 
the results of physicochemical and rheological studies of 
wet foams obtained from hen egg albumin with the addi-
tion of xanthan gum and/or arabic gum using the batch 
method. Physicochemical analysis included determination 
of foam density, gas phase volume fraction, overrun, sta-
bility and distribution of gas bubbles suspended in liquid. 
The study of hydrocolloids effect on the distribution of gas 
bubbles was based on standard descriptive parameter es-
timation and the use of the nonparametric Kolmogorov-
Smirnov test. The study [38] evaluated the expression of 
basic fibroblast growth factor and the number of osteo-

blasts during orthodontic tooth movement after adminis-
tration of Bifidobacterium bifidum probiotic in male Wistar 
rats. Orthodontic tooth movement was carried out using 
a nickel titanium coil spring with a force of 10 g applied 
between the first incisor and the maxillary first molar of 
a Wistar rat. Samples were then removed on days 3, 7 and 
14. Maxillary tissue was isolated for immunohistochemical 
examination and hematoxylin-eosin staining. All data were 
analyzed using an independent t-test (p<0.05), which was 
implemented based on Kolmogorov-Smirnov test and Lev-
ene test (p>0.05). In the study [39], it was proposed to use a 
queuing network to simulate the diffusion of molecules in 
accordance with Fick’s law. The proposed model was tested 
using Kolmogorov-Smirnov test to compare the results ob-
tained from the simulation with the theoretical standard 
deviations obtained based on Einstein-Smoluchowski test. 
The article [40] develops two different approaches to simu-
lative diagnostic procedures for models of Markov chains 
based on bands. The first approach uses a formal test based 
on Kolmogorov-Smirnov or Cramer-von Mises statistics.

The article [41] shows a study to determine the effect of 
consumption of roasted soyabeans and textured soy pro-
tein on the clinical and metabolic status of older women 
with borderline metabolic syndrome parameters. A ran-
domized single-blinded controlled clinical trial included 
75 women aged over 60 years with a diagnosis of metabolic 
syndrome based on ATP III. Participants were randomly 
assigned to three groups of 25 people who consumed for 
12 weeks: 1) soyabeans; 2) textured soy protein; and 3) con-
trol diet. Fasting blood samples were taken at the begin-
ning and end of the study to compare metabolic responses. 
Kolmogorov-Smirnov test, ANOVA, ANCOVA, paired 
 t-test, and repeated measurements analysis of the general-
ized linear model were used to evaluate the study results. 
As a result of the study, it was found that nutrition and 
physical activity of the participants in the two groups did 
not differ significantly. After 12 weeks of intervention, the 
soyabean-treated participants showed significant reduc-
tions in total cholesterol (p <0.001), low-density lipopro-
teins, and very-low-density lipoproteins. Thus, short-term 
consumption of roasted soyabeans and textured soy pro-
tein improves lipid profile, markers of glucose intolerance 
and oxidative stress. Although roasted soyabeans were 
more effective than textured soy protein. Moderate daily 
intake of roasted soyabeans as a snack or textured soy pro-
tein as a food supplement for individuals with borderline 
metabolic syndrome parameters may be a safe and use-
ful way to avoid disease progression. The work [42] was 
aimed at analyzing the consumption of sugar (sucrose) 
by the low-income population of Brazil. A cross-sectional 
descriptive study was conducted to evaluate typical cus-
tomers of a popular restaurant (PR) in Brazil (Brazilian 
food aid program for low-income people). In the final 
sample, 1232 adult PR clients were interviewed. Exclusion 
criteria were pregnant women, diabetics, or people on any 
special sucrose-restricted diet. People were enrolled at 

 

Let’s calculate the accumulated empirical relative fre-
quencies for sample 2 by the same formula:  
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Using the table of critical values [9, 10, 11, 12], for a 
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1.36.  

Let’s plot the axis of significance:  
 
 
 
 
 

 

Since 𝜆𝜆���� < 𝜆𝜆��, then the null hypothesis is not re-
jected, i.e. the effect of the drug significantly exceeds the 
effect of the placebo.  

In the studies [36-44], Kolmogorov-Smirnov test was 
used. The study [36] aimed to determine the relationship 
between the management of household solid waste (HSW) 
and non-household solid waste (NHSW) (X variable) in 
Huancavelica County and municipal government (Y vari-
able) in 2016. The population and sample were 12,249 and 
140 people, respectively. The collected data were analyzed 
using Kolmogorov-Smirnov test. The paper [37] repre-
sents the results of physicochemical and rheological stud-
ies of wet foams obtained from hen egg albumin with the 
addition of xanthan gum and/or arabic gum using the 
batch method. Physicochemical analysis included deter-
mination of foam density, gas phase volume fraction, over-
run, stability and distribution of gas bubbles suspended in 
liquid. The study of hydrocolloids effect on the distribu-
tion of gas bubbles was based on standard descriptive pa-
rameter estimation and the use of the nonparametric Kol-

mogorov-Smirnov test. The study [38] evaluated the ex-
pression of basic fibroblast growth factor and the number 
of osteoblasts during orthodontic tooth movement after 
administration of Bifidobacterium bifidum probiotic in 
male Wistar rats. Orthodontic tooth movement was car-
ried out using a nickel titanium coil spring with a force of 
10 g applied between the first incisor and the maxillary first 
molar of a Wistar rat. Samples were then removed on days 
3, 7 and 14. Maxillary tissue was isolated for immunohisto-
chemical examination and hematoxylin-eosin staining. All 
data were analyzed using an independent t-test (p < 0.05), 
which was implemented based on Kolmogorov-Smirnov 
test and Levene test (p > 0.05). In the study [39], it was pro-
posed to use a queuing network to simulate the diffusion 
of molecules in accordance with Fick's law. The proposed 
model was tested using Kolmogorov-Smirnov test to com-
pare the results obtained from the simulation with the the-
oretical standard deviations obtained based on Einstein-
Smoluchowski test. The article [40] develops two different 
approaches to simulative diagnostic procedures for mod-
els of Markov chains based on bands. The first approach 
uses a formal test based on Kolmogorov-Smirnov or 
Cramer-von Mises statistics.  

The article [41] shows a study to determine the effect of 
consumption of roasted soyabeans and textured soy pro-
tein on the clinical and metabolic status of older women 
with borderline metabolic syndrome parameters. A ran-
domized single-blinded controlled clinical trial included 
75 women aged over 60 years with a diagnosis of metabolic 
syndrome based on ATP III. Participants were randomly 
assigned to three groups of 25 people who consumed for 
12 weeks: 1) soyabeans; 2) textured soy protein; and 3) 
control diet. Fasting blood samples were taken at the be-
ginning and end of the study to compare metabolic re-
sponses. Kolmogorov-Smirnov test, ANOVA, ANCOVA, 
paired t-test, and repeated measurements analysis of the 
generalized linear model were used to evaluate the study 
results. As a result of the study, it was found that nutrition 
and physical activity of the participants in the two groups 
did not differ significantly. After 12 weeks of intervention, 
the soyabean-treated participants showed significant re-
ductions in total cholesterol (p < 0.001), low-density lipo-
proteins, and very-low-density lipoproteins. Thus, short-
term consumption of roasted soyabeans and textured soy 
protein improves lipid profile, markers of glucose intoler-
ance and oxidative stress. Although roasted soyabeans 
were more effective than textured soy protein. Moderate 
daily intake of roasted soyabeans as a snack or textured soy 
protein as a food supplement for individuals with border-
line metabolic syndrome parameters may be a safe and 
useful way to avoid disease progression. The work [42] was 
aimed at analyzing the consumption of sugar (sucrose) by 
the low-income population of Brazil. A cross-sectional 
descriptive study was conducted to evaluate typical cus-
tomers of a popular restaurant (PR) in Brazil (Brazilian  
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lunchtime while they waited in line to pick up food. The 
invitation to participate were made to the first person in 
the queue, then to the 15th person, and so on until the sam-
pling was complete. A three-day, 24-hour review was used 
to estimate sugar intake. Sociodemographic and anthropo-
metric data were collected so that client profiles could be 
compiled. To characterize the sample, a statistical analy-
sis of descriptive data (frequency, mean value, median, 
percentage and standard deviation) was carried out. Sta-
tistical normality tests (Kolmogorov-Smirnov test) were 
performed for all analyzes to test the assumptions of the 
statistical tests. The average total energy value (TEV) for 
the estimated three-day period was 1980.23 ± 726.75 kcal. 
A statistically significant difference was found between 
income groups (p < 0.01). The northern and northeastern 
regions have the lowest median income in Brazil, statis-
tically different from the south (p < 0.01) and southeast 
(p < 0.01) regions. The northern region showed the lowest 
sugar consumption from industrial products, in contrast 
to the northeast (p = 0.007), southeast (p = 0.010) and south 
(p = 0.043) regions. The north region also has the lowest 
consumption of home-cooked foods among other regions 
(p < 0.001). Total sugar (sucrose) intake did not differ with 
body mass index (p = 0.321). There was no significant 
difference in sugar (sucrose) intake over the three days 
(p = 0.078). The addition of sugar (sucrose) contributed to 
36.7% of all sugar (sucrose) intake, and sweetened bever-
ages contributed to 22.53% of all sugar (sucrose) intake. 
Home-cooked products accounted for 20.06% of sugar (su-
crose) consumption and industrial products accounted for 
22.53% of sugar (sucrose) consumption. Thus, consump-
tion of free sugar (sucrose) is still the largest contributor 
to total sugar (sucrose) intake, followed by sweetened bev-
erages, especially on weekends. The average percentage of 
sugar (sucrose) intake exceeds the World Health Organiza-
tion’s recommendation of consuming less than 5% of total 
energy from sugars. Because this population group has a 
high percentage of overweight and obesity, sugar (sucrose) 
consumption may increase health outcomes by increasing 
public health costs.

The article [43] presents a study assessing the consump-
tion of meat and products obtained from hunting by the 
consumer population. To do this, a survey was conducted 
on the frequency of eating meat from the four most repre-
sentative species in Spain, two large species: wild boar (Sus 
scrofa) and red deer (Cervus elaphus), as well as two small 
species: rabbit (Oryctolagus cuuniculus) and red partridge 
(Alectis rufa), as well as processed meat products (salami 
sausages) made from the meat of these animals. The survey 
was conducted on 337 habitual consumers of these prod-
ucts. The overall average per capita meat consumption in 
this population group is 6.87 kg of meat per year or 8.57 kg 
of meat per year if processed meat products are also con-
sidered. The consumption of rabbit, red partridge, red deer, 

and wild boar was 1.85, 0.82, 2.28, and 1.92 kg per person 
per year, respectively. Using probabilistic methods, distri-
butions of meat consumption frequencies were estimated 
for each of the studied hunted species. The distribution of 
consumption frequencies was statistically proven by the 
chi-squared test and Kolmogorov-Smirnov test.

The aim of the study [44] was to describe the nutritional 
value of food and non-alcoholic beverages advertised in a 
lineup for children compared to a general lineup on two 
national private free-to-air television channels in Colom-
bia. The methods chosen were: a cross-sectional descriptive 
study. The recording was made in July 2012 for four days 
randomly selected from 6:00 am to 12:30 pm. Nutrient con-
tent has been classified according to the Food Standards 
Agency nutrition profile criteria for nutrients indicating 
risk, the Pan-American Health Organization for trans fats, 
and Colombian Resolution 333 dated 2011, which classifies 
foods as a source of protective nutrients. Descriptive sta-
tistics was used, i. e. Kolmogorov-Smirnov test to establish 
normality and Pearson’s chi-squared test to compare vari-
ables. The p value of < 0.05 was taken into account. As a 
result, the following data were obtained: 1560 advertising 
clips were shown in 52 hours of recording, of which 23.3% 
(364) clips advertised food and drinks, of which 56.3% were 
shown in a lineup for children. In terms of nutritional val-
ue, in the lineup for children, a high percentage of foods 
and non-alcoholic beverages classified as “rich” in sugar, so-
dium, saturated fats (69.0%, 56.0%, 57.1%) was noted, com-
pared with the general lineup. In contrast, the percentage 
of foods and non-alcoholic beverages classified as “rich” in 
total fat content was higher in the general lineup (70.4% vs. 
29.6%, respectively). Thus, in the lineup for children, a large 
impact of food and non-alcoholic beverage advertising was 
observed characterized by a high content of high-risk nutri-
ents and a low content of foods.

Thus, the possibilities of nonparametric statistics are 
shown in the analysis of seemingly incomparable results.

Conclusion
The second part discusses nonparametric tests for 

testing hypotheses of distribution type and nonparamet-
ric tests for testing hypotheses of sampling homogeneity. 
Pearson’s chi-squared test, Kolmogorov-Smirnov test, Kol-
mogorov test were reviewed. Using examples, the use of 
tests was discussed, and their capabilities and limitations 
were evaluated. Based on the literature review, brief de-
scriptions of studies in which methods of nonparametric 
statistics have been successfully applied are given. These 
tests may be used when comparing descriptive character-
istics, which allows statistical processing of the results, for 
example, tasting evaluation of the product or morphologi-
cal analysis of the section. Nonparametric methods also al-
low to compare groups with different unequal number of 
parameters.
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