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Introduction
Simulation and control of food refrigeration and heat 

treatment processes based on the calculation of tempera-
ture profiles inside the food product, as well as the deter-
mination and justification of points for thermal control 
are inexorably associated with the need to know the ther-
mophysical properties. Currently, according to the results 
of studies [1–3], the accuracy of food technology process-
es simulation is determined primarily by the availability 
and reliability of the initial data on the thermophysical 
properties of food products, local heat transfer coeffi-
cients, intensity of chemical processes, rather than by the 
computing power and principles of the numerical models 
used.

Cooling, freezing and thawing processes are among the 
main methods of meat preserving [4,5]. In addition, super-
chilled meat is becoming more common [6]. Superchilling 
of meat means its surface freezing and subsequent storage 
at the temperatures 1 °C to 2 °C below cryoscopic tempera-
ture [7]. According to [8], storing pork at minus 2 °C in-
stead of plus 3.5 °C has increased its shelf life from 2 to 16 
weeks. The main problem in introducing this technology 
is to determine the required time of meat freezing, as well 
as the development of appropriate calculation methods for 

various linear dimensions of samples and their thermo-
physical properties [7].

With the introduction of numerical simulation meth-
ods for the processes of refrigeration and heat treatment 
in food industry [9,10], the development of simple and 
accurate semi-empirical relationships describing the ther-
mophysical properties of meat is of particular importance, 
including the thermal conductivity factor, which, together 
with the specific isobaric heat capacity, significantly varies 
at negative temperatures.

Currently, two methods for determining the thermo-
physical properties of food products are the most common: 
calculation based on the nutrient composition [11–13] and 
the use of experimental data [14–18].

The method for calculating the thermophysical charac-
teristics of products based on the nutrient composition is 
associated with a higher error, which can be 15% to 20%, but 
it may be used for any product. In the ASHRAE handbook 
[11], data on the composition of products and cryoscopic 
temperature were obtained empirically (USDA), while the 
presented thermophysical properties of products were de-
termined by a calculation method based on the thermo-
physical properties of their nutrients according to the mod-
el proposed in [12]. Researchers [12] were among the first 
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to obtain and arrange the thermophysical characteristics 
of individual components in food products (proteins, fats, 
carbohydrates) in a wide temperature range and developed 
the corresponding calculation models. In [13], an extensive 
collection of empirical data from various researches on the 
nutritional composition of food products and polynomial 
relationships for calculating their thermophysical proper-
ties in the temperature range of minus 40 °C to plus 40 °C 
are presented. Experimental data [14] on the thermal con-
ductivity of beef meat, fat and bones are of special interest.

Experimental studies of the thermal conductivity fac-
tor in meat products indicate a significant anisotropy and 
the effect of its refrigeration and grinding modes on the 
properties of the product [19,20]. A study of the ionizing 
radiation (dose 12 kGy) effect on the thermophysical prop-
erties of chilled beef and pork [21] showed an increase in 
the thermal conductivity factor by 15% to 20%, a decrease 
in the specific isobaric heat capacity by 10% to 12%, and a 
decrease in water activity by 3%. As a possible explanation, 
the author notes a decrease in the moisture content and 
water-holding capacity of meat [22].

Considering the product as a multicomponent dispersed 
medium, three main components may be distinguished for 
meat, which determine its thermal conductivity factor: 
muscle fibers (and fat), ice crystals and unfrozen moisture 
[23]. Attempting to improve approaches for calculating the 
thermophysical properties of moisture-containing prod-
ucts at subcryoscopic temperatures, the authors [24] noted 
the need to take into account the structure and size of ice 
crystals [25, 26], as well as to increase the accuracy of the 
product cryoscopic temperature and the frozen moisture 
proportion calculations [27].

Research on the thermophysical properties of NOR 
and DFD beef [28,29] indicated a strong correlation be-
tween cryoscopic temperature and meat pH level. With an 
increase in the pH of beef from 5.5 to 6.9, the cryoscopic 
temperature increases from minus 1.5 °C to minus 0.9 °C 
[28]. At the temperatures close to cryoscopic temperature, 
the amount of frozen moisture in meat of different grades 
may vary by more than 30% [29,30,31].

Thus, the aim of the presented work is the experimental 
research and development of a practical approach to the 
calculation of the thermal conductivity factor in meat of 
different grades.

Materials and methods
Measurement of the thermal conductivity factor in beef 

with the Linseis TNV-100 device equipped with the Hot-
Point Kapton-foil-sensors (Linseis Messgeraete GmbH, 
Germany). The metrological characteristics of the device 
are presented in Table 1. The stationary temperature mode 
required for testing was ensured by placing the sensor and 
the test sample in thermostat with a specified temperature 
(in the range of plus 20 °C to minus 35 °C with a step of 
5 °C) and holding the sample for at least an hour at a con-
stant temperature recorded by the sensor.

Table 1. Metrological characteristics of the HotPoint sensor by 
Linseis

Temperature measurement range, °C minus 100  
to plus 200

Thermal conductivity measurement range, W/m · K 0.02 to 30.0
Maximum absolute error when measuring thermal 
conductivity, % ±7.0

Thermal conductivity measurement using the HotPoint 
sensor is carried out by the method of a non-stationary 
heat source in the form of a plane. The measuring principle 
is as follows: the sensor is placed between the two halves 
of the test sample. During the measurement, a DC current 
(10 mA, 30 mW) flows through the film resistor of the sen-
sor, causing the temperature to rise. The generated heat is 
scattered in the sample on both sides of the sensor. The 
temperature deviation from the initial temperature of the 
sample measured by the sensor makes it possible to calcu-
late the thermal conductivity of the material under study 
according to the relationship:
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where:  
Q is the heat flow, W;  
r is the effective radius of the sensor, m;  
∆T� is the deviation of the sample temperature from the initial temperature measured by the 
sensor, °C.  

 (1)

where:
 Q is the heat flow, W;
 r is the effective radius of the sensor, m;
 ∆Ts is the deviation of the sample temperature from the ini-

tial temperature measured by the sensor, °C.

The studied beef samples for measuring the thermal 
conductivity factor were cut in the form of two plates with 
linear dimensions of at least 40 mm × 40 mm × 10 mm.

The HotPoint sensor was calibrated using reference 
materials: polymethyl methacrylate (PMMA) (thermal 
conductivity factor of 0.194  W/m · K), BK7 optical glass 
(thermal conductivity factor of 1.118  W/m · K), and tita-
nium (thermal conductivity factor of 22 W/m · K). Control 
measurements of the thermal conductivity in ice and dis-
tilled water showed the deviation of the results from the 
reference values not exceeding 2.5%.

The pH value of beef was measured using the PCE-228 
pH meter (PCE Deutschland GmbH, Germany) charac-
terized by a measurement error not exceeding ± 0.5% at 
20 °C.

The moisture content in the samples was measured on 
the AND ML-50 moisture analyzer by AND Japan, with a 
sample weight of 5 grams and an error in moisture content 
measuring not exceeding 0.2%.

The cryoscopic temperature of the samples was mea-
sured using the OSKR-1 cryoscope osmometer (KIVI, Rus-
sia). This device is equipped with a mechanical initiator 
of the crystallization process. In the temperature range of 
0 °C to minus 0.93 °C, it provides an error of the cryoscop-
ic temperature measurement not exceeding ± 0.002 °C. At 
the temperatures below minus 0.93 °C, the cryoscopic tem-
perature measurement error is ± 0.010 °C.

The amount of frozen moisture in the samples depend-
ing on the temperature was measured on the DSC204 F1 
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Phoenix® differential scanning calorimeter (NETZSCH-
Gerätebau GmbH, Germany). A detailed description of 
the methodology for carrying out these measurements and 
the settings of the device are described in [32]. The error in 
measuring the enthalpy of phase transitions according to 
the manufacturer’s data does not exceed 3.0%.

For research, the authors used beef samples of NOR 
(6 samples) and DFD (6 samples) grades. Samples of beef 
M. longissimus dorsi were obtained at the slaughters of meat 
processing plants in the Moscow region. For each sample, 
at least 2 measurements of the thermal conductivity fac-
tor, moisture content, cryoscopic temperature and frozen 
moisture proportion were carried out.

Results and discussion
According to the studies, the average values of the 

moisture content in beef of NOR and DFD grades were ex-
tremely close and amounted to WNOR = 0.762 ± 0.165 and 
WDFD = 0.763 ± 0.011, respectively, with a confidence level 
of p = 0.95. Comparative results of the studies on cryo-
scopic temperature of samples depending on the pH values 
are presented in Figure 1.

The obtained results are in good agreement with the ex-
perimental data obtained by Farouk M. M. et al. in [28]. 
With an increase in pH from 5.3 to 7, an increase in cryo-
scopic temperature from minus 0.94 °C to minus 0.72 °C 
is observed. At the same time, the cryoscopic temperature 
of the beef samples studied in this work was on average 
0.27 °C higher than that of Farouk M. M. et al. in [28]. This 
deviation may be due to both the physical characteristics 
of specific cattle breeds and the conditions for their feeding 
and maintenance, which requires additional research be-
yond the scope of this article. Calculation of the cryoscopic 
temperature of beef depending on the pH values may be 
carried out according to the following relationship:

 tcr ≈ 0.129 · pH – 1.628 (2)

Figure 2 shows the dependence of the frozen moisture 
proportion in the NOR and DFD beef samples obtained 

with a differential scanning calorimeter, the results obtained 
by calculation using formula (3), as well as the data present-
ed in [18]. While the moisture content in NOR and DFD 
samples is equal, the amount of frozen moisture in DFD 
samples is 1.5% higher. This confirms the authors’ hypoth-
esis [28] that one of the reasons for the higher cryoscopic 
temperature and pH value of DFD beef is better water-hold-
ing capacity with less strongly bound moisture (by 16%).

The results of the measurements are in satisfactory 
agreement with the data of V. P. Latyshev [18]. Earlier ex-
periments [30] showed that at temperatures below minus 
35 °C, the amount of frozen moisture in meat remains al-
most unchanged. Taking this into account, a formula was 
developed for calculating the amount of frozen moisture 
(3). Its main advantage is the high accuracy of the frozen 
moisture proportion calculation at the temperatures close 
to cryoscopic temperature, regardless of the moisture con-
tent in the products.
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characterized by 10% to 12% higher values   of thermal con-
ductivity factor in comparison with NOR beef. Deviations 
in the thermal conductivity factors of beef obtained in this 
study, as well as in the works [14, 18], may be not only due 
to different properties of beef samples, but also due to the 
modes of meat freezing used by the authors. Low chilling 
rates promote the growth of larger ice crystals and lead to 
higher thermal conductivity of the samples [26].

For calculating the thermal conductivity factor of beef 
meat depending on temperature and pH, the authors ob-
tained the following calculated relationship based on the 
method of regression analysis in the temperature range 
above cryoscopic temperature:
 λ(t, pH) = 0.26 + 0.0007 · t + 0.0317 · pH (4)

To describe the thermal conductivity factor in the tem-
perature range below cryoscopic temperature, the authors 
initially attempted to develop a semi-analytical relation-
ship taking into account relationships (2) and (3), but the 
coefficient of the experimental data determination was 
very low and did not exceed 0.7. As a result, preference was 
given to the development of an empirical relationship and 
the regression analysis:

 λ(t, pH) = 
t

0.595 · t + 0.435 · pH – 4.398
 (5)

The proposed relationship describes the data collect-
ed by the authors on the thermal conductivity of beef at 
temperatures below cryoscopic temperature with deter-
mination coefficient R2 = 0.95. The choice of pH as one 

of the variables is primarily based on the simplicity of its 
measurements, in contrast to the cryoscopic temperature. 
These relationships are aimed primarily at the develop-
ment of rapid numerical methods for determining the 
required duration of freezing for vacuum-packed bone-
less meat and improving conveyor technologies for meat 
superchilling.

Conclusion
With the introduction of superchilling technology for 

vacuum-packed boneless meat, the development of mathe-
matical models for the process of its freezing, as well as ob-
taining relationships to describe its thermophysical prop-
erties, become more relevant than ever. The pH value is 
easy to measure and, unlike cryoscopic temperature, may 
be easily used in conveyor production for a more accurate 
assessment of meat thermophysical properties.

With an increase in pH from 5.3 to 7, an increase in 
cryoscopic temperature is observed from minus 0.94 °C to 
minus 0.72  °C. Frozen moisture proportion analysis was 
confirmed by other authors showing that one of the rea-
sons for the higher cryoscopic temperature and pH of DFD 
beef is higher water holding capacity with less strongly 
bound moisture.

For meat of different grades, there is a difference in the 
values   of thermal conductivity by 10% to 12%. The authors 
have developed empirical relationships for calculating the 
thermal conductivity factor of meat depending on temper-
ature and pH value.
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