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Introduction
The knowledge of product thermophysical properties 

is extremely important in designing and realization of 
processes of their transportation, storage and technologi-
cal processing linked with freezing and thawing. This de-
termines a large number of studies conducted by several 
foreign and national scientists [1,2,3,4,5,6,7,8,9,10,11,12,13] 
and summarized largely in [14]. Meat is one of such prod-
ucts. Meat freezing is accompanied by crystallization of 
water contained in it. From the viewpoint of studying 
heat exchange processes in meat refrigerated processing, 
it is conventional to classify water contained in it into free 
and bound. There is still no strict definition of the term 
“bound water” [13]. It is noted that bound water does 
not freeze at a temperature of minus 40 °C. It is shown in 
[2,15] that freezing of free water and, consequently, crys-
tallization are ended when refrigerating at minus 30 °C 
(beef) and minus 31 °C (pork) (243.15 К and 242.15 К, re-
spectively). Riedel pointed at this fact for the first time by 
the example of beef [2].

When studying the process of phase transition, the 
basic thermophysical characteristics of a product are the 
cryoscopic temperature Тf and initial moisture content w. 
At the cryoscopic temperature in a range of 273 К to 268 К, 
the crystallization process is accompanied by the release of 
90% of latent heat of crystallization [12]. Specific isobaric 
heat capacity measured in this area is a sum of heat capaci-
ties: true heat capacity [11] and heat capacity conditioned 
by released latent heat of crystal formation [15].

It is generally agreed that the most reliable results are 
obtained upon measurement using a low-temperature 
adiabatic vacuum calorimeter [8,16,17]. Figure 1 presents 
a graph of the dependence of beef heat capacity measured 

using such instrument according to the data obtained by 
Latyshev [8].

Peculiar features of the indicated measurements are 
discreteness and duration of the measurement process 
upon the absence of the possibility to manage the rate of 
refrigeration. Due to this, discreteness of results, as a rule, 
is equal to or higher than 1 К.

The studies appeared that noticed the significance 
of the effect of physico-chemical processes occurred 
in meat in a range of the subcryoscopic temperatures 
(Tkr ± 0.5  К)  on its consumer properties [18]. For such 
investigations of meat refrigeration in a narrow range 
of the subcryoscopic temperatures, higher frequency 
of temperature measurement using the DSC method is 
necessary [16,17,19].The use of the differential scanning 
calorimetry method allows minimizing discreteness for 
specific heat capacity calculation.
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Figure 1. Dependence of beef specific heat capacity measured using 
a low-temperature adiabatic vacuum calorimeter [8]
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At present, however, there is no method that enables 
predicting the character of meat heat capacity dependence 
on a temperature in a range of the phase transition tem-
peratures.

Several studies of the crystallization process consider 
two phenomena: the crystal growth and diffusion of the 
intercrystalline liquid phase to the crystal surface. With 
that, they analyze the crystal growth rate, which changes 
the sizes of channels between them and hydrodynamics of 
the intercrystalline liquid flow. This approach is realized in 
[20,21,22]. The calculated dependencies presented in these 
studies are markedly inconsistent with the data obtained 
using an adiabatic calorimeter [8]. A significant difference 
in the nature of these processes from meat free water crys-
tallization does not allow using any elements of these stud-
ies in this research.

The aim of this research is to develop a model for crys-
tallization process based on the Debye concept, which en-
ables predicting by calculation the specific isobaric heat 
capacity depending on a temperature and initial moisture 
as applied to beef freezing.

Materials and methods
The development of a model for free water crystalliza-

tion in beef is based in this study on the publication [19], 
in which the authors (being also the authors of the present 
paper) showed the possibility to use the Debye concept by 
the example of NOR beef. The dependence has the follow-
ing form:
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where  c  is meat specific heat capacity, kJ/kg·K; 

3 is the nondimensional coefficient; 

µ∙N is the number of crystallization centers in a meat sample; 
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µ = 0.0725 ÷ 1.035 is the coefficient that depends on the sample moisture content; 

Tkr is the beef cryoscopic temperature (the temperature of the beginning of free 
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 c is meat specific heat capacity, kJ/kg·K;
 3 is the nondimensional coefficient;
 µ∙N is the number of crystallization centers in a meat sample;
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tallization centers;
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ple moisture content;
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beginning of free water freezing with crystal formation);
 θ = hν/k, К is the characteristic temperature;
 h is the Planck constant, h = 6.626 ⋅ 10–34 J ⋅ s;
 ν is the vibration frequency of atoms in a crystal, s-1;
 k is the Boltzmann constant, J/K; k = 1.38 ⋅ 10–23 J/K;
 Т is Kelvin temperature;
 δ is the coefficient corresponding to a deviation of the tem-

perature of the water crystallization onset in the process of 
transformation into ice from the temperature of the heat ca-
pacity peak in the process of phase transition, K;

 B is the coefficient characterizing the contribution of 
heat  capacity of components not containing free water, 
В = 7.5 ∙ 10–3 kJ/kg∙К.

By investigating beef heat capacity in a wide range of 
moisture (37% — 75%), the possibility to use dependence 
(1) to calculate specific isobaric heat capacity using the cal-

culated dependencies of the parameters µ, θ, δ and Тkr ob-
tained below is shown in this paper.

The most important characteristic of the crystallization 
process is the cryoscopic temperature Тkr. Methods for 
measuring this parameter are given in [15, 19]. For beef, 
the temperature, when free water is finally frozen out, is 
243 ±0.25 К  (–30.15 ±0.25 °C), which corresponds to the 
end of free water phase transition in beef. The above men-
tioned paper [19] presents dependence (2) by the results 
of the experimental study of a decrease in heat capacity of 
a frozen sample lower than the temperature of the end of 
phase transition.

 сfr.b. = 0,548 + 1,85 ⋅ 10–3 ⋅ T + 1.68 ⋅ 10–5 ⋅ T2, (2)
where сfr.b. .is specific heat capacity of frozen beef not including 

heat capacity determined by latent heat of crystallization 
(melting) kJ/kg ∙ К.

It is necessary to note that the intersection point of the 
phase transition curve (1) with curve (2) corresponds to 
the end of moisture crystallization process in beef. Fulfil-
ment of the indicated statement by dependence (1) for dif-
ferent moisture levels in beef can be another criterion of 
the model adequacy to the real process of phase transition.

The experimental base of this study aimed at valida-
tion of the dependence (1) adequacy are the results of the 
detection of heat capacity of beef with different moisture 
content obtained by the differential scanning calorimetry 
(DSC) method using a DSC204 F1 NETZSCH instrument.

Detection of phase transition enthalpy in beef freezing 
by the indicated method ensured the error of not more than 
± 3%. When processing the results of the DSC experiments 
with the method of τ — R correction [17], dependencies 
of beef heat capacity on temperature were practically in 
the complete agreement with the data on heat capacity ob-
tained using the adiabatic instrument by Latishev at a meat 
moisture level of 74.1% [8].

Latent heat of water crystal formation in the samples 
was calculated as the integral difference of total heat ca-
pacity of the sample сTS.S and specific heat capacity of the 
frozen sample сfr.b. by (2):

 ∆HLH = 
T2

∫
T1

(cTS.S – cfr.b.) dt (3)

where: 
 ΔНLH — enthalpy (latent heat) of crystallization of free water 

in a beef sample, J/kg; 
 Т1, Т2 are temperatures of the beginning and end of the melt-

ing peak, respectively (Т1 = 243 К; Т2 = Тkr is the cryoscopic 
temperature) °С;

 сfr.b. is the line determined by the values of beef specific heat 
capacity by (2);

 сTS.S is the line that characterizes total (effective) specific heat 
capacity of a sample.

The method of heat capacity determination proposed in 
the work [19] in correspondence with the concept of heat ca-
pacity by Debye can be used for analysis of the  association of 
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obtained dependency (1) parameters with indicators of the 
freezing regime and different meat initial moisture.

Different moisture content in the samples was achieved 
by freeze drying, after which they were placed into a crucible 
for DSC measurements. After DSC measurements of heat 
capacity values, the crucibles were opened and moisture of 
the samples was determined by drying in a thermostat at an 
air temperature of 100oС and the following weighing.

Values of the cryoscopic temperature necessary for in-
vestigations were detected using an osmometer-cryoscope 
OSСR-1. The instrument was entered into the RF State 
Register of measuring instruments under the number of 
42519-09. The technical characteristics are given in Table 1.

The absolute thermodynamic scale, according to which 
Т = 273.15 К + t °С [14], is used in the work.

Table 1. Main specifications of OSKR-1
Parameter Error

Range of freezing temperature measurement: 0 to –3.720 °C
Limits of allowable fundamental absolute error in 
temperature measurement
— in the range of 0 to –0.930 °C: ±0.002 °C
— in the range of –0.930 to –3.720 °C: ±0.010 °C
Sample volume, not less than: 0.3 ml

The development of the model of heat capacity by (2) in 
dependence on a temperature and moisture of the studied 
beef sample is realized by selection of the model parameter 
investigation depending on the initial moisture by mini-
mizing the integral dependencies (3) and (4). The results 
are given in table 2, as well as in the form of polynomial de-
pendencies (6–10). The final correction of correspondence 
of the calculated values of beef specific heat capacity to the 
values obtained by the empirical way is carried out using 
the coefficient B.

The parameter Тkr was determined using the above 
mentioned instrument with account for the instrument er-
ror and random errors with the overall error of ± 0.05 К.

The parameters µ; θ; and δ were found based on the fol-
lowing considerations:

1 — It has been noticed that the parameter µ is deter-
mined by the maximum value of the peak of the experi-
mental curve of heat capacity, which enables using this 
parameter as a reference point when determining the pa-
rameter µ. The sequence of these points obtained at differ-
ent moisture levels in beef can be described as a polyno-
mial of type (8), Figure 3.

2  — The characteristic temperature θ, as was shown 
above upon its definition, depends on the character of heat 
removal (the phonon flow according to Debye with the fre-
quency of ν ~ 1011); with that, the value of the parameter θ 
increases with reduction of the water content in a sample; 
several reference points of the parameter θ value for the 
experimental curves of beef heat capacity allowed obtain-
ing the empirical polynomial dependence of the parameter 
on moisture (9), Figure 6.

3  — The parameter δ (see the definition above). This 
value practically compensates errors in the measurement 
of the cryoscopic temperature and corrects the position of 
the peak of the heat capacity curve in the area of phase 
transition. The sequence of values of this parameter ob-
tained upon correction by bringing into proximity the po-
sition of the empirical peak of the phase transition curve to 
the calculated one by dependence (2) is approximated by 
dependence (10), Figure 5.

Verification of the obtained calculated expressions of 
specific heat capacity for samples with all moisture levels 
was carried out by several criteria:

1 — minimization of the difference between the calcu-
lated and experimental values of phase transition enthalpy; 
that is, minimization of the difference between the results 
of the calculation by (3) and calculation of enthalpy using 
dependencies (1) and (2):

 ∆HLH
exp – ∆HLH

calc = 
T2

∫
T1

(cTS.S – cfr.b.) dt –
T2

∫
T1

(c1 – c2) dt, (4)

where: с, сfr.b are specific heat capacities calculated by dependen-
cies (1) and (2).

2  — minimization of the difference between the se-
quence of measurement results for specific heat capacity 
by the DSC method and by equation (1).

 ∆c = c1 – F(TDSK), (5)

See Figure 2. The experimental curves of heat capacity 
F(TDSK) are marked in the figure by the numbers with the 
‘e’ index.

Results and discussion
In the final form, the mathematical model of free water 

crystallization upon beef freezing is a system of equations 
(1), (2), (6–10) plus correcting equation (11).

Approximating dependencies of the parameters Tkr, 
ΔH, µ, θ, δ on the initial moisture content in beef have the 
following form (6–10):

 Тkr(w) = 257.1 + 34 ∙ w – 18 ∙ w2; Δerror ≤ 0,1%  (6)

 ∆НLH = L ∙ w ∙ (1 – 0,35 ∙ (1 – w)/w); Δerror ≤ 5%   (7)

 µ(w) = 0,014 + 1,85 ∙ w4 + 3 ∙ w5; Δerror ≤ 14%;  (8)

 θ(w) = 3,66 – 4,35 ⋅ w; Δerror ≤ 20%  (9)

 (w) = 1,94 – 2,25 ⋅ w; Δerror ≤ 10%.  (10)

It is necessary to note that the error of dependence (7) 
in the area of low moisture levels (< 60%) is ± 5%, in the 
area of >60% of moisture, the deviation of calculated val-
ues is ~3%. The use of dependence (7) by Riedel [2] to cal-
culate beef enthalpy is significantly easier than the use of 
dependencies (1 and 2) without decreasing accuracy.

Dependencies of beef heat capacity by equation (1) us-
ing the experimental data presented in Table 2 are given in 
a form of graphic dependencies in Figure 2. It is necessary 

https://www.multitran.com/m.exe?s=sequence+of+inputs&l1=1&l2=2
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to take into account that all calculations are true in a range 
of 243 К ≤ Тkr К.

Numbers of curves correspond to the sequential num-
bers of the rows in Table 2; with that, the numbers with 
the “e” index correspond to approximations of the experi-
mental values of heat capacities and without the index to 
calculated values by equation (1).

Figures 3–7 present the graphs of dependencies (6–10) 
with account for data of Table 2.

Upon condition of postulation of the circumstance 
that at the temperature of the end of phase transition all 
curves by equation (1), which were calculated for differ-
ent moisture levels by equations (6–10), should converge 
in one intersection point at Tkr = 243 K with the freez-
ing curve of a beef frozen sample (11) (Figure 8), calcu-
lated by equation (2), it is necessary to assign a value to 
constant B that ensures the condition of the postulate in 
equation (1) for each moisture level. Table 3 gives these 
values and the polynomial approximation of the set of 
values (11).

Table 3. Adjusted values of the parameter B for equation (1)

w 0.37 0.45 0.600 0.625 0.700 0.752

B∙10–3. J/kg∙К 7.55 6.911 7.197 7.385 7.325 7.557

 D(w) = 9,125 – 8,5w + 8,5w2, (Δerror ± 5%)  (11)

Table 2. Moisture, cryoscopic temperature, enthalpy and parameters µ, θ, δ of the equation of phase transition in beef samples
Number 
of meat 
samples

Initial beef 
moisture w, mass 

fraction

Tkr
±0.05

K

HLH, by (3)
(exp.)
kJ/kg

HLH
(calc.)

by (1), kJ/kg

HLH, (calc.)
by (5)
kJ/kg

µ,
non-

dimensional

θ,
K

δ,
К

1 0,370 267,14 45 44.998 49,843 0,0725 2,130 1,100
2 0,450 269.14 91 90,136 85,850 0,2980 1,800 0,96
3 0,600 270,73 interp. 155 155,420 153,364 0,6300 0,920 0,600
4 0,651 271.84 168,5 169.837 169,837 0,7130 0,820 0,400
5 0,700 271,85 198 198.213 198,213 0,8780 0,710 0,416
6 0,751 272,4 220 220.07 220,007 1,0350 0,497 0,28

Figure 2. Dependencies of beef heat capacities at different initial moisture levels presented in Table 2
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Figure 4. Dependence of enthalpy of phase transition (crystal forma-
tion) on the initial moisture of the beef sample by equation (7)
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Figure 5. Dependence of the coefficient µ, which characterizes the 
number of crystals in the mass unit of freezing water, on the initial 
moisture content by equation (8)
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Conclusion
The calculated model was developed for the beef freez-

ing process in a range of temperatures of free water phase 
transition realized by the way of crystallization described 
by the system of equations (1–2, (6–11), linking beef spe-
cific heat capacity, temperature and initial moisture.

The proposed model allows predicting beef heat capac-
ity values in a range of the most energy-intensive freezing 
process.

The development method can be used for similar com-
putational simulation of freezing processes for other meat 
raw materials and semi-finished products as well as fish.
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